Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import open_clip | |
from .flamingo import Flamingo | |
from .flamingo_lm import FlamingoLMMixin | |
from .utils import extend_instance | |
def create_model_and_transforms( | |
clip_vision_encoder_path: str, | |
clip_vision_encoder_pretrained: str, | |
lang_encoder_path: str, | |
tokenizer_path: str, | |
cross_attn_every_n_layers: int = 1, | |
use_local_files: bool = False, | |
decoder_layers_attr_name: str = None, | |
freeze_lm_embeddings: bool = False, | |
device: int = 0, | |
**flamingo_kwargs, | |
): | |
""" | |
Initialize a Flamingo model from a pretrained vision encoder and language encoder. | |
Appends special tokens to the tokenizer and freezes backbones. | |
Args: | |
clip_vision_encoder_path (str): path to pretrained clip model (e.g. "ViT-B-32") | |
clip_vision_encoder_pretrained (str): name of pretraining dataset for clip model (e.g. "laion2b_s32b_b79k") | |
lang_encoder_path (str): path to pretrained language encoder | |
tokenizer_path (str): path to pretrained tokenizer | |
cross_attn_every_n_layers (int, optional): determines how often to add a cross-attention layer. Defaults to 1. | |
use_local_files (bool, optional): whether to use local files. Defaults to False. | |
decoder_layers_attr_name (str, optional): name of the decoder layers attribute. Defaults to None. | |
Returns: | |
Flamingo: Flamingo model from pretrained vision and language encoders | |
Image processor: Pipeline to preprocess input images | |
Tokenizer: A tokenizer for the language model | |
""" | |
vision_encoder, _, image_processor = open_clip.create_model_and_transforms( | |
clip_vision_encoder_path, pretrained=clip_vision_encoder_pretrained | |
) | |
# set the vision encoder to output the visual features | |
vision_encoder.visual.output_tokens = True | |
vision_encoder.to(device, dtype=torch.bfloat16) if device > -1 else None | |
text_tokenizer = AutoTokenizer.from_pretrained( | |
tokenizer_path, | |
local_files_only=use_local_files, | |
trust_remote_code=True, | |
) | |
# add Flamingo special tokens to the tokenizer | |
text_tokenizer.add_special_tokens( | |
{"additional_special_tokens": ["<|endofchunk|>", "<image>"]} | |
) | |
if text_tokenizer.pad_token is None: | |
# Issue: GPT models don't have a pad token, which we use to | |
# modify labels for the loss. | |
text_tokenizer.add_special_tokens({"pad_token": "<PAD>"}) | |
lang_encoder = AutoModelForCausalLM.from_pretrained( | |
lang_encoder_path, | |
local_files_only=use_local_files, | |
trust_remote_code=True, | |
).to(device, dtype=torch.bfloat16) if device > -1 else None | |
# hacks for MPT-1B, which doesn't have a get_input_embeddings method | |
if "mpt-1b-redpajama-200b" in lang_encoder_path: | |
class EmbeddingFnMixin: | |
def get_input_embeddings(self): | |
return self.transformer.wte | |
def set_input_embeddings(self, new_embeddings): | |
self.transformer.wte = new_embeddings | |
extend_instance(lang_encoder, EmbeddingFnMixin) | |
# convert LM to FlamingoLM | |
extend_instance(lang_encoder, FlamingoLMMixin) | |
if decoder_layers_attr_name is None: | |
decoder_layers_attr_name = _infer_decoder_layers_attr_name(lang_encoder) | |
lang_encoder.set_decoder_layers_attr_name(decoder_layers_attr_name) | |
lang_encoder.resize_token_embeddings(len(text_tokenizer)) | |
model = Flamingo( | |
vision_encoder, | |
lang_encoder, | |
text_tokenizer.encode("<|endofchunk|>")[-1], | |
text_tokenizer.encode("<image>")[-1], | |
vis_dim=open_clip.get_model_config(clip_vision_encoder_path)["vision_cfg"][ | |
"width" | |
], | |
cross_attn_every_n_layers=cross_attn_every_n_layers, | |
**flamingo_kwargs, | |
).to(device, dtype=torch.bfloat16) if device > -1 else None | |
# Freeze all parameters | |
model.requires_grad_(False) | |
assert sum(p.numel() for p in model.parameters() if p.requires_grad) == 0 | |
# Unfreeze perceiver, gated_cross_attn_layers, and LM input embeddings | |
model.perceiver.requires_grad_(True) | |
model.lang_encoder.gated_cross_attn_layers.requires_grad_(True) | |
if not freeze_lm_embeddings: | |
model.lang_encoder.get_input_embeddings().requires_grad_(True) | |
# TODO: investigate also training the output embeddings when untied | |
print( | |
f"Flamingo model initialized with {sum(p.numel() for p in model.parameters() if p.requires_grad)} trainable parameters" | |
) | |
return model, image_processor, text_tokenizer | |
def _infer_decoder_layers_attr_name(model): | |
for k in __KNOWN_DECODER_LAYERS_ATTR_NAMES: | |
if k.lower() in model.__class__.__name__.lower(): | |
return __KNOWN_DECODER_LAYERS_ATTR_NAMES[k] | |
raise ValueError( | |
f"We require the attribute name for the nn.ModuleList in the decoder storing the transformer block layers. Please supply this string manually." | |
) | |
__KNOWN_DECODER_LAYERS_ATTR_NAMES = { | |
"opt": "model.decoder.layers", | |
"gptj": "transformer.h", | |
"gpt-j": "transformer.h", | |
"pythia": "gpt_neox.layers", | |
"llama": "model.layers", | |
"gptneoxforcausallm": "gpt_neox.layers", | |
"mpt": "transformer.blocks", | |
"mosaicgpt": "transformer.blocks", | |
} | |