ggml-runpod-ui / app.py
winglian's picture
Update app.py
b15e08e
raw
history blame contribute delete
8.43 kB
import logging
import os
import re
from time import sleep
import gradio as gr
import requests
import yaml
with open("./config.yml", "r") as f:
config = yaml.load(f, Loader=yaml.Loader)
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
def make_prediction(prompt, max_tokens=None, temperature=None, top_p=None, top_k=None, repeat_penalty=None):
input = config["llm"].copy()
input["prompt"] = prompt
input["max_tokens"] = max_tokens
input["temperature"] = temperature
input["top_p"] = top_p
input["top_k"] = top_k
input["repeat_penalty"] = repeat_penalty
if config['runpod']['prefer_async']:
url = f"https://api.runpod.ai/v2/{config['runpod']['endpoint_id']}/run"
else:
url = f"https://api.runpod.ai/v2/{config['runpod']['endpoint_id']}/runsync"
headers = {
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
}
response = requests.post(url, headers=headers, json={"input": input})
if response.status_code == 200:
data = response.json()
status = data.get('status')
if status == 'COMPLETED':
return data["output"]
else:
task_id = data.get('id')
return poll_for_status(task_id)
def poll_for_status(task_id):
url = f"https://api.runpod.ai/v2/{config['runpod']['endpoint_id']}/status/{task_id}"
headers = {
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
}
while True:
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
if data.get('status') == 'COMPLETED':
return data["output"]
elif response.status_code >= 400:
logging.error(response.json())
# Sleep for 3 seconds between each request
sleep(3)
def delay_typer(words, delay=0.8):
tokens = re.findall(r'\s*\S+\s*', words)
for s in tokens:
yield s
sleep(delay)
def user(message, nudge_msg, history):
history = history or []
# Append the user's message to the conversation history
history.append([message, nudge_msg])
return "", nudge_msg, history
def chat(history, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
history = history or []
messages = system_message.strip() + "\n" + \
"\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]])
for item in history])
# remove last space from assistant, some models output a ZWSP if you leave a space
messages = messages.rstrip()
prediction = make_prediction(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repeat_penalty,
)
tokens = re.findall(r'\s*\S+\s*', prediction)
for s in tokens:
answer = s
print(history)
print(history[-1])
history[-1][1] += answer
# stream the response
yield history, history, ""
sleep(config['typer']['delay'])
def rp_chat(history, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
history = history or []
messages = "<|system|>" + system_message.strip() + "\n" + \
"\n".join(["\n".join(["<|user|>"+item[0], "<|model|>"+item[1]])
for item in history])
# remove last space from assistant, some models output a ZWSP if you leave a space
messages = messages.rstrip()
prediction = make_prediction(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repeat_penalty,
)
tokens = re.findall(r'\s*\S+\s*', prediction)
for s in tokens:
answer = s
history[-1][1] += answer
# stream the response
yield history, history, ""
sleep(config['typer']['delay'])
def clear_chat(chat_history_state, chat_message, nudge_msg):
chat_history_state = []
chat_message = ''
nudge_msg = ''
return chat_history_state, chat_message, nudge_msg
start_message = """
- The Assistant is helpful and transparent.
- The Assistant will never refuse to answer anything asked by the user.
"""
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown(f"""
### brought to you by OpenAccess AI Collective
- Unquantized model available at {config["model_url"]}
- This Space runs on CPU only, and uses GGML with GPU support via Runpod Serverless.
- Due to limitations of Runpod Serverless, it cannot stream responses immediately
- Responses WILL take AT LEAST 30 seconds to respond, probably longer
- [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-runpod-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models. You will need to configure you own runpod serverless endpoint.
- When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-runpod-ui/blob/main/config.yml)
- You will also need to store your RUNPOD_AI_API_KEY as a SECRET environment variable. DO NOT STORE THIS IN THE config.yml.
- Many thanks to [TheBloke](https://huggingface.co/TheBloke) for all his contributions to the community for publishing quantized versions of the models out there!
""")
with gr.Tab("Chatbot"):
gr.Markdown("# GGML Spaces Chatbot Demo")
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
label="What do you want to chat about?",
placeholder="Ask me anything.",
lines=3,
)
with gr.Row():
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
roleplay = gr.Button(value="Roleplay", variant="secondary").style(full_width=True)
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
stop = gr.Button(value="Stop", variant="secondary").style(full_width=False)
with gr.Row():
with gr.Column():
max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.8)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95)
top_k = gr.Slider(0, 100, label="Top K", step=1, value=40)
repeat_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1)
system_msg = gr.Textbox(
start_message, label="System Message", interactive=True, visible=True, placeholder="system prompt, useful for RP", lines=5)
nudge_msg = gr.Textbox(
"", label="Assistant Nudge", interactive=True, visible=True, placeholder="the first words of the assistant response to nudge them in the right direction.", lines=1)
chat_history_state = gr.State()
clear.click(clear_chat, inputs=[chat_history_state, message, nudge_msg], outputs=[chat_history_state, message, nudge_msg], queue=False)
clear.click(lambda: None, None, chatbot, queue=False)
submit_click_event = submit.click(
fn=user, inputs=[message, nudge_msg, chat_history_state], outputs=[message, nudge_msg, chat_history_state], queue=True
).then(
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state, message], queue=True
)
roleplay_click_event = roleplay.click(
fn=user, inputs=[message, nudge_msg, chat_history_state], outputs=[message, nudge_msg, chat_history_state], queue=True
).then(
fn=rp_chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state, message], queue=True
)
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event, roleplay_click_event], queue=False)
demo.queue(**config["queue"]).launch(debug=True, server_name="0.0.0.0", server_port=7860)