import torch import torch.nn as nn TOUR_LENGTH = 0 TIME_WINDOW = 1 class kNearestPredictor(nn.Module): def __init__(self, problem, k, k_type): """ Paramters --------- problem: str problem type k: float if the vehicle visis k% nearest node, this model labels the visit as prioritizing tour length """ super().__init__() self.problem = problem self.num_classes = 2 self.k_type = k_type if k_type == "num": self.k = int(k) elif k_type == "ratio": self.k = k else: assert False, "Invalid k_type. select from [num, ratio]" def forward(self, inputs): """ Parameters ---------- Returns ------- probs: torch.tensor [batch_size x num_classes] """ #---------------- # input features #---------------- curr_node_id = inputs["curr_node_id"] next_node_id = inputs["next_node_id"] node_feat = inputs["node_feats"] mask = inputs["mask"] coord_dim = 2 batch_size = curr_node_id.size(0) coords = node_feat[:, :, :coord_dim] # [batch_size x num_nodes x coord_dim] num_candidates = (mask > 0).sum(dim=-1) # [batch_size] topk = torch.round(num_candidates * self.k).to(torch.long) # [batch_size] curr_coord = coords.gather(1, curr_node_id[:, None, None].expand_as(coords)) # [batch_size x 1 x coord_dim] dist_from_curr_node = torch.norm(curr_coord - coords, dim=-1) # [batch_size x 1 x num_nodes] visit_topk = [] for i in range(batch_size): if self.k_type == "num": k = self.k else: k = topk[i].item() id = torch.topk(input=dist_from_curr_node[i], k=k, dim=-1, largest=True)[1] visit_topk.append(torch.isin(next_node_id[i], id)) visit_topk = torch.stack(visit_topk, 0) idx = (1 - visit_topk.int()).to(torch.long) probs = torch.zeros(batch_size, self.num_classes).to(torch.float) probs.scatter_(-1, idx.unsqueeze(-1).expand_as(probs), 1.0) return probs def get_inputs(self, tour, first_explained_step, node_feats): """ For TSPTW TODO: refactoring Parameters ---------- tour: list [seq_length] first_explained_step: int node_feats np.array [num_nodes x node_dim] Returns ------- out: dict (key: data type [data_size]) curr_node_id: torch.tensor [num_explained_paths] next_node_id: torch.tensor [num_explained_paths] node_feats: torch.tensor [num_explained_paths x num_nodes x node_dim] mask: torch.tensor [num_explained_paths x num_nodes] state: torch.tensor [num_explained_paths x state_dim] """ if isinstance(node_feats, np.ndarray): node_feats = torch.from_numpy(node_feats.astype(np.float32)).clone() tour = torch.LongTensor(tour) coord_dim = 2 out = {"curr_node_id": [], "next_node_id": [], "mask": [], "state": []} for step in range(first_explained_step, len(tour) - 1): # node ids curr_node_id = tour[step] next_node_id = tour[step + 1] # mask & state max_coord = 100 coord = node_feats[:, coord_dim] / max_coord # [num_nodes x coord_dim] time_window = node_feats[:, coord_dim:] # [num_nodes x 2(start, end)] time_window = (time_window - time_window[1:].min()) / time_window[1:].max() # min-max normalization curr_time = torch.FloatTensor([0.0]) raw_coord = node_feats[:, coord_dim] raw_time_window = node_feats[:, coord_dim:] raw_curr_time = torch.FloatTensor([0.0]) mask = torch.ones(node_feats.size(0), dtype=torch.long) # feasible -> 1, infeasible -> 0 for i in range(step + 1): curr_id = tour[i] if i > 0: prev_id = tour[i - 1] raw_curr_time += torch.norm(raw_coord[curr_id] - raw_coord[prev_id]) curr_time += torch.norm(coord[curr_id] - coord[prev_id]) # visited? mask[curr_id] = 0 # curr_time exceeds the time window? mask[curr_time > time_window[:, 1]] = 0 curr_time = (raw_curr_time - raw_time_window[1:].min()) / raw_time_window[1:].max() # min-max normalization out["curr_node_id"].append(curr_node_id) out["next_node_id"].append(next_node_id) out["mask"].append(mask) out["state"].append(curr_time) out = {key: torch.stack(value, 0) for key, value in out.items()} node_feats = node_feats.unsqueeze(0).expand(out["mask"].size(0), node_feats.size(-2), node_feats.size(-1)) out.update({"node_feats": node_feats}) return out def get_topk_ids(self, input, k, dim, largest): """ Parameters ---------- input: torch.tensor [batch_size x num_nodes x num_nodes] k: torch.tensor [batch_size] dim: int largest: bool Returns ------- topk_ids: torch.tensor [batch_size x num_node x k] """ batch_size = input.size(0) max_k = k.max() ids = [] for i in range(batch_size): id = torch.topk(input=input[i], k=k[i].item(), dim=dim, largest=largest)[1] # adjust tensor size if id.size(0) == 0: id = torch.full((max_k, ), -1000) elif id.size(0) < max_k: id = torch.cat((id, torch.full((max_k - id.size(0), ), id[0])), -1) ids.append(id) return torch.stack(ids, 0)