Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import torch | |
from utils.utils import load_dataset, save_dataset | |
from utils.data_utils.dataset_base import DatasetBase, DataLoaderBase | |
from models.solvers.general_solver import GeneralSolver | |
from models.classifiers.ground_truth.ground_truth_base import get_visited_mask | |
from models.classifiers.ground_truth.ground_truth_cvrp import GroundTruthCVRP | |
class CVRPDataset(DatasetBase): | |
def __init__(self, coord_dim, num_samples, num_nodes, solver="ortools", classifier="ortools", annotation=True, parallel=True, random_seed=1234, num_cpus=os.cpu_count()): | |
super().__init__(coord_dim, num_samples, num_nodes, annotation, parallel, random_seed, num_cpus) | |
CAPACITY = { | |
10: 20, | |
20: 30, | |
50: 40, | |
100: 50 | |
} | |
self.capacity = CAPACITY[num_nodes] | |
problem = "cvrp" | |
solver_type = solver | |
classifier_solver = classifier | |
self.cvrp_solver = GeneralSolver(problem=problem, solver_type=solver_type) | |
self.classifier = GroundTruthCVRP(solver_type=classifier_solver) | |
def generate_instance(self, seed): | |
np.random.seed(seed) | |
coords = np.random.uniform(size=(self.num_nodes+1, self.coord_dim)) | |
demand = np.random.randint(1, 10, size=(self.num_nodes+1, )) | |
demand[0] = 0 # set demand of the depot to zero | |
return { | |
"coords": coords, | |
"demand": demand, | |
"grid_size": np.array([1.0]), | |
"capacity": np.array([self.capacity], dtype=np.int64) | |
} | |
def annotate(self, instance): | |
""" | |
Paramters | |
--------- | |
""" | |
# solve CVRP | |
node_feats = instance | |
cvrp_tours = self.cvrp_solver.solve(node_feats) | |
if cvrp_tours is None: | |
return | |
inputs = self.classifier.get_inputs(cvrp_tours, 0, node_feats) | |
labels = self.classifier(inputs, annotation=True) | |
if labels is None: | |
return | |
instance.update({"tour": cvrp_tours, "labels": labels}) | |
return instance | |
def get_feasible_nodes(self): | |
pass | |
def get_cap_mask2(tour, step, node_feats): | |
num_nodes = len(node_feats["coords"]) | |
demands = node_feats["demand"] | |
remaining_cap = node_feats["capacity"].copy().item() | |
less_than_cap = np.ones(num_nodes).astype(np.int32) | |
for i in range(step): | |
remaining_cap -= demands[tour[i]] | |
less_than_cap[remaining_cap < demands] = 0 | |
less_than_cap = less_than_cap > 0 | |
return less_than_cap, (remaining_cap / node_feats["capacity"].item()) | |
class CVRPDataloader(DataLoaderBase): | |
# @override | |
def load_randomly(self, instance, fname=None): | |
data = [] | |
coords = torch.FloatTensor(instance["coords"]) # [num_nodes x coord_dim] | |
demands = torch.FloatTensor(instance["demand"] / instance["capacity"]) # [num_nodes x 1] | |
node_feats = torch.cat((coords, demands[:, None]), -1) # [num_nodes x (coord_dim + 1)] | |
tours = instance["tour"] | |
labels = instance["labels"] | |
for vehicle_id in range(len(labels)): | |
for step, label in labels[vehicle_id]: | |
visited = get_visited_mask(tours[vehicle_id], step, instance) | |
not_exceed_cap, curr_cap = get_cap_mask2(tours[vehicle_id], step, instance) | |
mask = torch.from_numpy((~visited) & not_exceed_cap) | |
mask[0] = True # depot is always feasible | |
data.append({ | |
"node_feats": node_feats, | |
"curr_node_id": torch.tensor(tours[vehicle_id][step-1]).to(torch.long), | |
"next_node_id": torch.tensor(tours[vehicle_id][step]).to(torch.long), | |
"mask": mask, | |
"state": torch.FloatTensor([curr_cap]), | |
"labels": torch.tensor(label).to(torch.long) | |
}) | |
if fname is not None: | |
save_dataset(data, fname, display=False) | |
return fname | |
else: | |
return data | |
def load_sequentially(self, instance, fname=None): | |
data = [] | |
coords = torch.FloatTensor(instance["coords"]) # [num_nodes x coord_dim] | |
demands = torch.FloatTensor(instance["demand"] / instance["capacity"])# [num_nodes x 1] | |
node_feats = torch.cat((coords, demands[:, None]), -1) # [num_nodes x (coord_dim + 1)] | |
tours = instance["tour"] | |
labels = instance["labels"] | |
num_nodes, node_dim = node_feats.size() | |
for vehicle_id in range(len(labels)): | |
seq_length = len(labels[vehicle_id]) | |
curr_node_id_list = []; next_node_id_list = [] | |
mask_list = []; state_list = []; label_list_ = [] | |
for step, label in labels[vehicle_id]: | |
visited = get_visited_mask(tours[vehicle_id], step, instance) | |
not_exceed_cap, curr_cap = get_cap_mask2(tours[vehicle_id], step, instance) | |
mask = torch.from_numpy((~visited) & not_exceed_cap) | |
mask[0] = True # depot is always feasible | |
curr_node_id_list.append(tours[vehicle_id][step-1]) | |
next_node_id_list.append(tours[vehicle_id][step]) | |
mask_list.append(mask) | |
state_list.append([curr_cap]) | |
label_list_.append(label) | |
data.append({ | |
"node_feats": node_feats.unsqueeze(0).expand(seq_length, num_nodes, node_dim), # [seq_length x num_nodes x node_feats] | |
"curr_node_id": torch.LongTensor(curr_node_id_list), # [seq_length] | |
"next_node_id": torch.LongTensor(next_node_id_list), # [seq_length] | |
"mask": torch.stack(mask_list, 0), # [seq_length x num_nodes] | |
"state": torch.FloatTensor(state_list), # [seq_length x state_dim(1)] | |
"labels": torch.LongTensor(label_list_) # [seq_length] | |
}) | |
if fname is not None: | |
save_dataset(data, fname, display=False) | |
return fname | |
else: | |
return data | |
def load_cvrp_sequentially(instance, fname=None): | |
data = [] | |
coords = torch.FloatTensor(instance["coords"]) # [num_nodes x coord_dim] | |
demands = torch.FloatTensor(instance["demand"] / instance["capacity"])# [num_nodes x 1] | |
node_feats = torch.cat((coords, demands[:, None]), -1) # [num_nodes x (coord_dim + 1)] | |
tours = instance["tour"] | |
labels = instance["labels"] | |
num_nodes, node_dim = node_feats.size() | |
for vehicle_id in range(len(labels)): | |
seq_length = len(tours[vehicle_id]) | |
curr_node_id_list = []; next_node_id_list = [] | |
mask_list = []; state_list = [] | |
for step in range(1, len(tours[vehicle_id])): | |
visited = get_visited_mask(tours[vehicle_id], step, instance) | |
not_exceed_cap, curr_cap = get_cap_mask2(tours[vehicle_id], step, instance) | |
mask = torch.from_numpy((~visited) & not_exceed_cap) | |
mask[0] = True # depot is always feasible | |
curr_node_id_list.append(tours[vehicle_id][step-1]) | |
next_node_id_list.append(tours[vehicle_id][step]) | |
mask_list.append(mask) | |
state_list.append([curr_cap]) | |
data.append({ | |
"node_feats": node_feats.unsqueeze(0).expand(seq_length, num_nodes, node_dim), # [seq_length x num_nodes x node_feats] | |
"curr_node_id": torch.LongTensor(curr_node_id_list), # [seq_length] | |
"next_node_id": torch.LongTensor(next_node_id_list), # [seq_length] | |
"mask": torch.stack(mask_list, 0), # [seq_length x num_nodes] | |
"state": torch.FloatTensor(state_list), # [seq_length x state_dim(1)] | |
}) | |
if fname is not None: | |
save_dataset(data, fname, display=False) | |
return fname | |
else: | |
return data |