Spaces:
Running
Running
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
class AttentionGraphEncoder(nn.Module): | |
def __init__(self, coord_dim, node_dim, state_dim, emb_dim, dropout): | |
super().__init__() | |
self.coord_dim = coord_dim | |
self.node_dim = node_dim | |
self.emb_dim = emb_dim | |
self.state_dim = state_dim | |
self.norm_factor = 1 / math.sqrt(emb_dim) | |
# initial embedding | |
self.init_linear_node = nn.Linear(node_dim, emb_dim) | |
self.init_linear_depot = nn.Linear(coord_dim, emb_dim) | |
if state_dim > 0: | |
self.init_linear_state = nn.Linear(state_dim, emb_dim) | |
# An attention layer | |
self.w_q = nn.Parameter(torch.FloatTensor((2 + int(state_dim > 0)) * emb_dim, emb_dim)) | |
self.w_k = nn.Parameter(torch.FloatTensor(2 * emb_dim, emb_dim)) | |
self.w_v = nn.Parameter(torch.FloatTensor(2 * emb_dim, emb_dim)) | |
# Dropout | |
self.dropout = nn.Dropout(dropout) | |
self.reset_parameters() | |
def reset_parameters(self): | |
for param in self.parameters(): | |
stdv = 1. / math.sqrt(param.size(-1)) | |
param.data.uniform_(-stdv, stdv) | |
def forward(self, inputs): | |
""" | |
Paramters | |
--------- | |
inputs: dict | |
curr_node_id: torch.LongTensor [batch_size x 1] | |
next_node_id: torch.LongTensor [batch_size x 1] | |
node_feat: torch.FloatTensor [batch_size x num_nodes x node_dim] | |
mask: torch.LongTensor [batch_size x num_nodes] | |
state: torch.FloatTensor [batch_size x state_dim] | |
Returns | |
------- | |
h: torch.tensor [batch_size x emb_dim] | |
graph embeddings | |
""" | |
#---------------- | |
# input features | |
#---------------- | |
curr_node_id = inputs["curr_node_id"] | |
next_node_id = inputs["next_node_id"] | |
node_feat = inputs["node_feats"] | |
mask = inputs["mask"] | |
state = inputs["state"] | |
#--------------------------- | |
# initial linear projection | |
#--------------------------- | |
node_emb = self.init_linear_node(node_feat[:, 1:, :]) # [batch_size x num_loc x emb_dim] | |
depot_emb = self.init_linear_depot(node_feat[:, 0:1, :2]) # [batch_size x 1 x emb_dim] | |
new_node_feat = torch.cat((depot_emb, node_emb), 1) # [batch_size x num_nodes x emb_dim] | |
new_node_feat = self.dropout(new_node_feat) | |
#--------------- | |
# preprocessing | |
#--------------- | |
batch_size = curr_node_id.size(0) | |
curr_emb = new_node_feat.gather(1, curr_node_id[:, None, None].expand(batch_size, 1, self.emb_dim)) | |
next_emb = new_node_feat.gather(1, next_node_id[:, None, None].expand(batch_size, 1, self.emb_dim)) | |
if state is not None and self.state_dim > 0: | |
state_emb = self.init_linear_state(state) # [batch_size x emb_dim] | |
input_q = torch.cat((curr_emb, next_emb, state_emb[:, None, :]), -1) # [batch_size x 1 x (3*emb_dim)] | |
else: | |
input_q = torch.cat((curr_emb, next_emb), -1) # [batch_size x 1 x (2*emb_dim)] | |
input_kv = torch.cat((curr_emb.expand_as(new_node_feat), new_node_feat), -1) # [batch_size x num_nodes x (2*emb_dim)] | |
#-------------------- | |
# An attention layer | |
#-------------------- | |
q = torch.matmul(input_q, self.w_q) # [batch_size x 1 x emb_dim] | |
k = torch.matmul(input_kv, self.w_k) # [batch_size x num_nodes x emb_dim] | |
v = torch.matmul(input_kv, self.w_v) # [batch_size x num_nodes x emb_dim] | |
compatibility = self.norm_factor * torch.matmul(q, k.transpose(-2, -1)) # [batch_size x 1 x num_nodes] | |
compatibility[(~mask).unsqueeze(1).expand_as(compatibility)] = -math.inf | |
attn = torch.softmax(compatibility, dim=-1) | |
h = torch.matmul(attn, v) # [batch_size x 1 x emb_dim] | |
h = h.squeeze(1) # [batch_size x emb_dim] | |
return h |