File size: 10,787 Bytes
719d0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import random
import numpy as np
import torch
from utils.utils import load_dataset, save_dataset
from utils.data_utils.dataset_base import DatasetBase, DataLoaderBase
from models.solvers.general_solver import GeneralSolver
from models.classifiers.ground_truth.ground_truth import GroundTruth
from models.classifiers.ground_truth.ground_truth_base import get_visited_mask

class PCTSPDataset(DatasetBase):
    def __init__(self, coord_dim, num_samples, num_nodes, solver="ortools", classifier="ortools", annotation=True, parallel=True, random_seed=1234, num_cpus=os.cpu_count(),
                 penalty_factor=3.):
        """
        Parameters
        ----------
        num_samples: int
            number of samples(instances)
        num_nodes: int 
            number of nodes
        grid_size: int or float32 
            x-pos/y-pos of cities will be in the range [0, grid_size]
        max_tw_gap: 
            maximum time windows gap allowed between the cities constituing the feasible tour
        max_tw_size: 
            time windows of cities will be in the range [0, max_tw_size]
        is_integer_instance: bool 
            True if we want the distances and time widows to have integer values
        seed: int
            seed used for generating the instance. -1 means no seed (instance is random)
        """
        super().__init__(coord_dim, num_samples, num_nodes, annotation, parallel, random_seed, num_cpus)
        self.penalty_factor = penalty_factor
        MAX_LENGTHS = {
            20: 2.,
            50: 3.,
            100: 4.
        }
        self.max_length = MAX_LENGTHS[num_nodes]
        problem = "pctsp"
        solver_type = solver
        classifier_type = classifier
        self.pctsp_solver = GeneralSolver(problem=problem, solver_type=solver_type)
        self.classifier   = GroundTruth(problem=problem, solver_type=classifier_type)

    def generate_instance(self, seed):
        """
        Minor change of https://github.com/wouterkool/attention-learn-to-route/blob/master/problems/pctsp/problem_pctsp.py
        """
        if seed is not None:
            np.random.seed(seed)
        
        #-----------------------------
        # generate locations of nodes
        #-----------------------------
        coords = np.random.uniform(size=(self.num_nodes+1, self.coord_dim))
        
        # For the penalty to make sense it should be not too large (in which case all nodes will be visited) nor too small
        # so we want the objective term to be approximately equal to the length of the tour, which we estimate with half
        # of the nodes by half of the tour length (which is very rough but similar to op)
        # This means that the sum of penalties for all nodes will be approximately equal to the tour length (on average)
        # The expected total (uniform) penalty of half of the nodes (since approx half will be visited by the constraint)
        # is (n / 2) / 2 = n / 4 so divide by this means multiply by 4 / n,
        # However instead of 4 we use penalty_factor (3 works well) so we can make them larger or smaller
        penalty_max = self.max_length * (self.penalty_factor) / float(self.num_nodes)
        penalties = np.random.uniform(size=(self.num_nodes+1, )) * penalty_max

        # Take uniform prizes
        # Now expectation is 0.5 so expected total prize is n / 2, we want to force to visit approximately half of the nodes
        # so the constraint will be that total prize >= (n / 2) / 2 = n / 4
        # equivalently, we divide all prizes by n / 4 and the total prize should be >= 1
        deterministic_prizes = np.random.uniform(size=(self.num_nodes+1, )) * 4 / float(self.num_nodes)
        deterministic_prizes[0] = 0.0 # Prize at the depot is zero

        return {
            "coords": coords,
            "penalties": penalties,
            "prizes": deterministic_prizes,
            "max_length": np.array([self.max_length]),
            "min_prize": np.min([np.sum(deterministic_prizes), 1.0]),
            "grid_size": np.array([1.0])
        }
    
    def annotate(self, instance):
        # solve PCTSP
        node_feats = instance
        pctsp_tour = self.pctsp_solver.solve(node_feats)
        if pctsp_tour is None:
            return
        # annotate each path
        inputs = self.classifier.get_inputs(pctsp_tour, 0, node_feats)
        labels = self.classifier(inputs, annotation=True)
        if labels is None:
            return
        instance.update({"tour": pctsp_tour, "labels": labels})
        return instance


def get_total_prizes(tour, step, node_feats):
    prizes = node_feats["prizes"]
    total_prize = 0.0
    for i in range(1, step):
        curr_id = tour[i]
        total_prize += prizes[curr_id]
    return total_prize

def get_total_penalty(visited_mask, node_feats):
    penalty = node_feats["penalties"]
    total_penalty = np.sum(penalty[~visited_mask])
    return total_penalty

class PCTSPDataloader(DataLoaderBase):
    # @override
    def load_randomly(self, instance, fname=None):
        data = []
        coords = torch.FloatTensor(instance["coords"]) # [num_nodes x coord_dim]
        prizes = torch.FloatTensor(instance["prizes"]) # [num_nodes x 1]
        penalties = torch.FloatTensor(instance["penalties"]) # [num_nodes x 1]
        node_feats = torch.cat((coords, prizes[:, None], penalties[:, None]), -1) # [num_nodes x (coord_dim + 2)]
        tours = instance["tour"]
        labels = instance["labels"]
        for vehicle_id in range(len(labels)):
            for step, label in labels[vehicle_id]:
                visited = get_visited_mask(tours[vehicle_id], step, instance)
                curr_prize   = get_total_prizes(tours[vehicle_id], step, instance)
                curr_penalty = get_total_penalty(visited, instance)
                mask = torch.from_numpy((~visited))
                mask[0] = True # depot is always feasible
                data.append({
                    "node_feats": node_feats,
                    "curr_node_id": torch.tensor(tours[vehicle_id][step-1]).to(torch.long),
                    "next_node_id": torch.tensor(tours[vehicle_id][step]).to(torch.long),
                    "mask": mask,
                    "state": torch.FloatTensor([curr_prize, curr_penalty]),
                    "labels": torch.tensor(label).to(torch.long)
                })
        if fname is not None:
            save_dataset(data, fname, display=False)
            return fname
        else:
            return data

    # @override
    def load_sequentially(self, instance, fname=None):
        data = []
        coords = torch.FloatTensor(instance["coords"]) # [num_nodes x coord_dim]
        prizes = torch.FloatTensor(instance["prizes"]) # [num_nodes x 1]
        penalties = torch.FloatTensor(instance["penalties"]) # [num_nodes x 1]
        node_feats = torch.cat((coords, prizes[:, None], penalties[:, None]), -1) # [num_nodes x (coord_dim + 2)]
        tours = instance["tour"]
        labels = instance["labels"]
        num_nodes, node_dim = node_feats.size()
        for vehicle_id in range(len(labels)):
            seq_length = len(labels[vehicle_id])
            curr_node_id_list = []; next_node_id_list = []
            mask_list = []; state_list = []; label_list = []
            for step, label in labels[vehicle_id]:
                visited = get_visited_mask(tours[vehicle_id], step, instance)
                curr_prize   = get_total_prizes(tours[vehicle_id], step, instance)
                curr_penalty = get_total_penalty(visited, instance)
                mask = torch.from_numpy((~visited))
                mask[0] = True # depot is always feasible
                # add values to the lists
                curr_node_id_list.append(tours[vehicle_id][step-1])
                next_node_id_list.append(tours[vehicle_id][step])
                mask_list.append(mask)
                state_list.append([curr_prize, curr_penalty])
                label_list.append(label)
            data.append({
                "node_feats": node_feats.unsqueeze(0).expand(seq_length, num_nodes, node_dim), # [seq_length x num_nodes x node_feats]
                "curr_node_id": torch.LongTensor(curr_node_id_list), # [seq_length]
                "next_node_id": torch.LongTensor(next_node_id_list), # [seq_length]
                "mask": torch.stack(mask_list, 0), # [seq_length x num_nodes]
                "state": torch.FloatTensor(state_list), # [seq_length x state_dim(1)]
                "labels": torch.LongTensor(label_list)  # [seq_length]
            })
        if fname is not None:
            save_dataset(data, fname, display=False)
            return fname
        else:
            return data

def load_pctsp_sequentially(instance, fname=None):
        data = []
        coords = torch.FloatTensor(instance["coords"]) # [num_nodes x coord_dim]
        prizes = torch.FloatTensor(instance["prizes"]) # [num_nodes x 1]
        penalties = torch.FloatTensor(instance["penalties"]) # [num_nodes x 1]
        node_feats = torch.cat((coords, prizes[:, None], penalties[:, None]), -1) # [num_nodes x (coord_dim + 2)]
        tours = instance["tour"]
        labels = instance["labels"]
        num_nodes, node_dim = node_feats.size()
        for vehicle_id in range(len(labels)):
            seq_length = len(tours[vehicle_id])
            curr_node_id_list = []; next_node_id_list = []
            mask_list = []; state_list = []
            for step in range(1, len(tours[vehicle_id])):
                visited = get_visited_mask(tours[vehicle_id], step, instance)
                curr_prize   = get_total_prizes(tours[vehicle_id], step, instance)
                curr_penalty = get_total_penalty(visited, instance)
                mask = torch.from_numpy((~visited))
                mask[0] = True # depot is always feasible
                # add values to the lists
                curr_node_id_list.append(tours[vehicle_id][step-1])
                next_node_id_list.append(tours[vehicle_id][step])
                mask_list.append(mask)
                state_list.append([curr_prize, curr_penalty])
            data.append({
                "node_feats": node_feats.unsqueeze(0).expand(seq_length, num_nodes, node_dim), # [seq_length x num_nodes x node_feats]
                "curr_node_id": torch.LongTensor(curr_node_id_list), # [seq_length]
                "next_node_id": torch.LongTensor(next_node_id_list), # [seq_length]
                "mask": torch.stack(mask_list, 0), # [seq_length x num_nodes]
                "state": torch.FloatTensor(state_list), # [seq_length x state_dim(1)]
            })
        if fname is not None:
            save_dataset(data, fname, display=False)
            return fname
        else:
            return data