File size: 13,891 Bytes
719d0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# templates
import numpy as np
import streamlit as st
from typing import Dict, List
from models.prompts.identify_question import Template4IdentifyQuestion
from models.prompts.generate_explanation import Template4GenerateExplanation
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AIMessage
import utils.util_app as util_app

class StreamingChatCallbackHandler(BaseCallbackHandler):
    def __init__(self):
        pass

    def on_llm_start(self, *args, **kwargs):
        self.container = st.empty()
        self.text = ""

    def on_llm_new_token(self, token: str, *args, **kwargs):
        self.text += token
        self.container.markdown(
            body=self.text,
            unsafe_allow_html=False,
        )

    def on_llm_end(self, response: str, *args, **kwargs):
        self.container.markdown(
            body=response.generations[0][0].text,
            unsafe_allow_html=False,
        )

class RouteExplainer():
    template_identify_question = Template4IdentifyQuestion()
    template_generate_explanation = Template4GenerateExplanation()

    def __init__(self,
                 llm,
                 cf_generator, 
                 classifier) -> None:
        assert cf_generator.problem == classifier.problem, "Problem type of cf_generator and predictor should coincide!"
        self.coord_dim = 2
        self.problem = cf_generator.problem
        self.cf_generator = cf_generator
        self.classifier = classifier
        self.actual_route = None
        self.cf_route = None
        # templates
        self.question_extractor = self.template_identify_question.sandwiches(llm)
        self.explanation_generator = self.template_generate_explanation.sandwiches(llm)

    #----------------
    # whole pipeline
    #----------------
    def generate_explanation(self, 
                             tour_list,
                             whynot_question: str,
                             actual_routes: list,
                             actual_labels: list,
                             node_feats: dict,
                             dist_matrix: np.array) -> str:
        #--------------------------------
        # define why & why-not questions
        #--------------------------------
        route_info_text = self.get_route_info_text(tour_list, actual_routes)
        inputs = self.question_extractor.invoke({
            "whynot_question": whynot_question,
            "route_info": route_info_text
        })
        util_app.stream_words(inputs["summary"] + " " + inputs["intent"])
        st.session_state.chat_history.append(AIMessage(content=inputs["summary"] + inputs["intent"]))
        if not inputs["success"]:
            return ""

        #----------------------
        # validate the CF edge
        #----------------------
        is_cf_edge_feasible, reason = self.validate_cf_edge(node_feats,
                                                            dist_matrix,
                                                            actual_routes[0],
                                                            inputs["cf_step"],
                                                            inputs["cf_visit"]-1)
        # exception
        if not is_cf_edge_feasible:
            util_app.stream_words(reason)
            return reason

        #---------------------
        # generate a cf route
        #---------------------
        cf_routes = self.cf_generator(actual_routes,
                                      vehicle_id=0,
                                      cf_step=inputs["cf_step"],
                                      cf_next_node_id=inputs["cf_visit"]-1,
                                      node_feats=node_feats,
                                      dist_matrix=dist_matrix)
        st.session_state.generated_cf_route = True
        st.session_state.close_chat = True
        st.session_state.cf_step = inputs["cf_step"]

        #--------------------------------------
        # classify the intentions of each edge
        #--------------------------------------
        cf_labels = self.classifier(self.classifier.get_inputs(cf_routes,
                                                               0,
                                                               node_feats,
                                                               dist_matrix))
        st.session_state.cf_routes = cf_routes
        st.session_state.cf_labels = cf_labels

        #-------------------------------------
        # generate a constrastive explanation
        #-------------------------------------
        comparison_results = self.get_comparison_results(question_summary=inputs["summary"],
                                                         tour_list=tour_list,
                                                         actual_routes=actual_routes,
                                                         actual_labels=actual_labels,
                                                         cf_routes=cf_routes,
                                                         cf_labels=cf_labels,
                                                         cf_step=inputs["cf_step"])
        
        explanation = self.explanation_generator.invoke({
            "comparison_results": comparison_results,
            "intent": inputs["intent"]
        }, config={"callbacks": [StreamingChatCallbackHandler()]})

        return explanation
    
    #-------------------------
    # for exctracting inputs
    #-------------------------
    def get_route_info_text(self, tour_list, routes) -> str:
        route_info = ""
        # nodes
        route_info += "Nodes(node id, name): "
        for i, destination in enumerate(tour_list):
            if i != len(tour_list) - 1:
                route_info += f"({i+1}, {destination['name']}), "
            else:
                route_info += f"({i+1}, {destination['name']})\n"

        # routes
        route_info += "Route: "
        for i, node_id in enumerate(routes[0]):
            if i == 0:
                route_info += f"{tour_list[node_id]['name']} "
            else:
                route_info += f"> (step {i}) > {tour_list[node_id]['name']})"
                if i == len(routes[0]) - 1:
                    route_info += "\n"
                else:
                    route_info += " "
        return route_info
    
    #--------------------------
    # for validating a CF edge
    #--------------------------
    def validate_cf_edge(self,
                         node_feats: Dict[str, np.array],
                         dist_matrix: np.array,
                         route: List[int],
                         cf_step: int,
                         cf_visit: int) -> bool:
        # calc current time
        curr_time = node_feats["time_window"][route[0]][0] # start point's open time
        for step in range(1, cf_step):
            curr_node_id = route[step-1]
            next_node_id = route[step]
            curr_time += node_feats["service_time"][curr_node_id] + dist_matrix[curr_node_id][next_node_id]
            curr_time = max(curr_time, node_feats["time_window"][next_node_id][0]) # waiting

        # validate the cf edge
        curr_node_id = route[cf_step-1]
        next_node_id = cf_visit
        next_node_close_time = node_feats["time_window"][next_node_id][1] 
        arrival_time = curr_time + node_feats["service_time"][curr_node_id] + dist_matrix[curr_node_id][next_node_id]
        if next_node_close_time < arrival_time:
            exceed_time = (arrival_time - next_node_close_time)
            return False, f"Oops, your CF edge is infeasible because it does not meet the destination's close time by {util_app.add_time_unit(exceed_time)}."
        else:
            return True, "The CF edge is feasible!"

    #-------------------------------
    # for generating an explanation
    #-------------------------------
    def get_comparison_results(self,
                               tour_list,
                               question_summary,
                               actual_routes: List[List[int]],
                               actual_labels: List[List[int]],
                               cf_routes: List[List[int]],
                               cf_labels: List[List[int]],
                               cf_step: int) -> str:
        comparison_results = "Question:\n" + question_summary + "\n"
        comparison_results += "Actual route:\n" + \
                                self.get_route_info(tour_list, actual_routes[0], actual_labels[0], cf_step-1, "actual") + \
                                self.get_representative_values(actual_routes[0], actual_labels[0], cf_step-1, "actual")
        comparison_results += "CF route:\n" + \
                                self.get_route_info(tour_list, cf_routes[0], cf_labels[0], cf_step-1, "CF") + \
                                self.get_representative_values(cf_routes[0], cf_labels[0], cf_step-1, "CF")
        comparison_results += "Difference between two routes:\n" + self.get_diff(cf_step-1, actual_routes[0], cf_routes[0])
        comparison_results += "Planed desination information:\n" + self.get_node_info()
        return comparison_results

    def get_route_info(self,
                       tour_list,
                       route: List[int],
                       label: List[int], 
                       ex_step: int, 
                       type: str) -> str:
        def get_labelname(label_number):
            return "route_len" if label_number == 0 else "time_window"
        route_info = "- route: "
        for i, node_id in enumerate(route):
            if i == ex_step and i != len(route) - 1:
                if type == "actual":
                    edge_label = {get_labelname(label[i])}
                else:
                    edge_label = "user_preference"
                route_info += f"{tour_list[node_id]['name']} > ({type} edge: {edge_label}) > "
            elif i != len(route) - 1:
                route_info += f"{tour_list[node_id]['name']} > ({get_labelname(label[i])}) > "
            else:
                route_info += f"{tour_list[node_id]['name']}\n"
        return route_info

    def get_representative_values(self, route, labels, ex_step, type) -> str:
        time_window_ratio = self.get_intention_ratio(1, labels, ex_step) * 100
        route_len_ratio = self.get_intention_ratio(0, labels, ex_step) * 100
        return f"- short-term effect (immediate travel time): {self.get_immediate_state(route, ex_step)//60} minutes\n- long-term effect (total travel time): {self.get_route_length(route)//60} minutes\n- missed nodes: {self.get_infeasible_node_name(route)}\n- edge-intention ratio after the {type} edge: time_window {time_window_ratio: .1f}%, route_len {route_len_ratio: .1f}%"

    def get_immediate_state(self, route, ex_step) -> str:
        return st.session_state.dist_matrix[route[ex_step]][route[ex_step+1]]

    def get_route_length(self, route) -> float:
        route_length = 0.0
        for i in range(len(route)-1):
            route_length += st.session_state.dist_matrix[route[i]][route[i+1]]
        return route_length

    def get_infeasible_nodes(self, route) -> int:
        return len(route) - (len(st.session_state.dist_matrix) - 1)

    def get_infeasible_node_name(self, route) -> str:
        if len(route) == len(st.session_state.dist_matrix) - 1:
            return "none"
        else:
            num_nodes = np.arange(len(st.session_state.dist_matrix))
            for node_id in route:
                num_nodes = num_nodes[num_nodes != node_id]
            return ",".join([st.session_state.tour_list[node_id]["name"] for node_id in num_nodes])

    def get_intention_ratio(self, 
                            intention: int, 
                            labels: List[int], 
                            ex_step: int) -> float:
        np_labels = np.array(labels)
        return np.sum(np_labels[ex_step:] == intention) / len(labels[ex_step:])

    def get_diff(self, ex_step, actual_route, cf_route) -> str:
        def get_str(effect: float):
            long_effect_str = "The actual route increases it by" if effect > 0 else "The actual route reduces it by"
            long_effect_str += util_app.add_time_unit(abs(effect))
            return long_effect_str
        
        def get_str2(num_nodes: int, num_missed_nodes):
            if num_nodes < 0:
                num_nodes_str = f"The actual route visits {abs(num_nodes)} more nodes" 
            elif num_nodes == 0:
                if num_missed_nodes == 0:
                    num_nodes_str = f"Both routes missed no node,"
                else:
                    num_nodes_str = f"Both routes missed the same number of nodes ({abs(num_missed_nodes)} node(s))"
            else:
                num_nodes_str = f"The actual route visits {abs(num_nodes)} less nodes" 
            return num_nodes_str

        # short/long-term effects
        short_effect = self.get_immediate_state(actual_route, ex_step) - self.get_immediate_state(cf_route, ex_step)
        long_effect  = self.get_route_length(actual_route) - self.get_route_length(cf_route)
        short_effect_str = get_str(short_effect)
        long_effect_str  = get_str(long_effect)

        # missed nodes
        missed_nodes = self.get_infeasible_nodes(actual_route) - self.get_infeasible_nodes(cf_route)
        missed_nodes_str = get_str2(missed_nodes, self.get_infeasible_nodes(actual_route))

        return f"- short-term effect: {short_effect_str}\n - long-term effect: {long_effect_str}\n- missed nodes: {missed_nodes_str}\n"

    def get_node_info(self) -> str:
        node_info = ""
        for i in range(len(st.session_state.df_tour)):
            node_info += f"- {st.session_state.df_tour['destination'][i]}: {st.session_state.df_tour['remarks'][i]}\n"
        return node_info