File size: 5,899 Bytes
719d0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn as nn

TOUR_LENGTH = 0
TIME_WINDOW = 1

class kNearestPredictor(nn.Module):
    def __init__(self, problem, k, k_type):
        """
        Paramters
        ---------
        problem: str
            problem type
        k: float
            if the vehicle visis k% nearest node, this model labels the visit as prioritizing tour length
        """
        super().__init__()
        self.problem = problem
        self.num_classes = 2
        self.k_type = k_type
        if k_type == "num":
            self.k = int(k)
        elif k_type == "ratio":
            self.k = k
        else:
            assert False, "Invalid k_type. select from [num, ratio]"

    def forward(self, inputs):
        """
        Parameters
        ----------

        Returns
        -------
        probs: torch.tensor [batch_size x num_classes]
        """
        #----------------
        # input features
        #----------------
        curr_node_id = inputs["curr_node_id"]
        next_node_id = inputs["next_node_id"]
        node_feat = inputs["node_feats"]
        mask = inputs["mask"]

        coord_dim = 2
        batch_size = curr_node_id.size(0)
        coords = node_feat[:, :, :coord_dim] # [batch_size x num_nodes x coord_dim]
        num_candidates = (mask > 0).sum(dim=-1) # [batch_size]
        topk = torch.round(num_candidates * self.k).to(torch.long) # [batch_size]
        curr_coord = coords.gather(1, curr_node_id[:, None, None].expand_as(coords)) # [batch_size x 1 x coord_dim]
        dist_from_curr_node = torch.norm(curr_coord - coords, dim=-1) # [batch_size x 1 x num_nodes]
        visit_topk = []
        for i in range(batch_size):
            if self.k_type == "num":
                k = self.k
            else:    
                k = topk[i].item()
            id = torch.topk(input=dist_from_curr_node[i], k=k, dim=-1, largest=True)[1]
            visit_topk.append(torch.isin(next_node_id[i], id))
        visit_topk = torch.stack(visit_topk, 0)
        idx = (1 - visit_topk.int()).to(torch.long)
        probs = torch.zeros(batch_size, self.num_classes).to(torch.float)
        probs.scatter_(-1, idx.unsqueeze(-1).expand_as(probs), 1.0)
        return probs
    
    def get_inputs(self, tour, first_explained_step, node_feats):
        """
        For TSPTW
        TODO: refactoring

        Parameters
        ----------
        tour: list [seq_length]
        first_explained_step: int
        node_feats np.array [num_nodes x node_dim]

        Returns
        -------
        out: dict (key: data type [data_size])
            curr_node_id: torch.tensor [num_explained_paths]
            next_node_id: torch.tensor [num_explained_paths]
            node_feats: torch.tensor [num_explained_paths x num_nodes x node_dim]
            mask: torch.tensor [num_explained_paths x num_nodes]
            state: torch.tensor [num_explained_paths x state_dim]
        """
        if isinstance(node_feats, np.ndarray):
            node_feats = torch.from_numpy(node_feats.astype(np.float32)).clone()
        tour = torch.LongTensor(tour)
        coord_dim = 2
        out = {"curr_node_id": [], "next_node_id": [], "mask": [], "state": []}
        for step in range(first_explained_step, len(tour) - 1):
            # node ids
            curr_node_id = tour[step]
            next_node_id = tour[step + 1]
            # mask & state
            max_coord = 100
            coord = node_feats[:, coord_dim] / max_coord # [num_nodes x coord_dim]
            time_window = node_feats[:, coord_dim:] # [num_nodes x 2(start, end)]
            time_window = (time_window - time_window[1:].min()) / time_window[1:].max() # min-max normalization
            curr_time = torch.FloatTensor([0.0])
            raw_coord = node_feats[:, coord_dim]
            raw_time_window = node_feats[:, coord_dim:]
            raw_curr_time = torch.FloatTensor([0.0])
            mask = torch.ones(node_feats.size(0), dtype=torch.long) # feasible -> 1, infeasible -> 0
            for i in range(step + 1):
                curr_id = tour[i]
                if i > 0:
                    prev_id = tour[i - 1]
                    raw_curr_time += torch.norm(raw_coord[curr_id] - raw_coord[prev_id])
                    curr_time += torch.norm(coord[curr_id] - coord[prev_id])
                    # visited?
                    mask[curr_id] = 0
                    # curr_time exceeds the time window?
                    mask[curr_time > time_window[:, 1]] = 0
            curr_time = (raw_curr_time - raw_time_window[1:].min()) / raw_time_window[1:].max() # min-max normalization
            out["curr_node_id"].append(curr_node_id)
            out["next_node_id"].append(next_node_id)
            out["mask"].append(mask)
            out["state"].append(curr_time)
        out = {key: torch.stack(value, 0) for key, value in out.items()}
        node_feats = node_feats.unsqueeze(0).expand(out["mask"].size(0), node_feats.size(-2), node_feats.size(-1))
        out.update({"node_feats": node_feats})
        return out

    def get_topk_ids(self, input, k, dim, largest):
        """
        Parameters
        ----------
        input: torch.tensor [batch_size x num_nodes x num_nodes]
        k: torch.tensor [batch_size]
        dim: int
        largest: bool

        Returns
        -------
        topk_ids: torch.tensor [batch_size x num_node x k]
        """
        batch_size = input.size(0)
        max_k = k.max()
        ids = []
        for i in range(batch_size):
            id = torch.topk(input=input[i], k=k[i].item(), dim=dim, largest=largest)[1]

            # adjust tensor size
            if id.size(0) == 0:
                id = torch.full((max_k, ), -1000)
            elif id.size(0) < max_k:
                id = torch.cat((id, torch.full((max_k - id.size(0), ), id[0])), -1)
            ids.append(id)
        return torch.stack(ids, 0)