File size: 8,679 Bytes
719d0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

#------------
# base class
#------------
class DecisionPredictorBase(nn.Module):
    def __init__(self, coord_dim, node_dim, state_dim, emb_dim, num_mlp_layers, num_classes, dropout):
        super().__init__()
        self.coord_dim = coord_dim
        self.node_dim  = node_dim 
        self.emb_dim   = emb_dim
        self.state_dim = state_dim
        self.num_mlp_layers = num_mlp_layers
        self.norm_factor = 1 / math.sqrt(emb_dim)

        # initial embedding
        self.init_linear_node  = nn.Linear(node_dim, emb_dim)
        self.init_linear_depot = nn.Linear(coord_dim, emb_dim)
        if state_dim > 0:
            self.init_linear_state = nn.Linear(state_dim, emb_dim)
        
        # An attention layer
        self.w_q = nn.Parameter(torch.FloatTensor((2 + int(state_dim > 0)) * emb_dim, emb_dim))
        self.w_k = nn.Parameter(torch.FloatTensor(2 * emb_dim, emb_dim))
        self.w_v = nn.Parameter(torch.FloatTensor(2 * emb_dim, emb_dim))
        
        # MLP
        self.mlp = nn.ModuleList()
        for i in range(self.num_mlp_layers):
            self.mlp.append(nn.Linear(emb_dim, emb_dim, bias=True))
        self.mlp.append(nn.Linear(emb_dim, num_classes, bias=True))

        # Dropout
        self.dropout = nn.Dropout(dropout)

        self.reset_parameters()

    def reset_parameters(self):
        for param in self.parameters():
            stdv = 1. / math.sqrt(param.size(-1))
            param.data.uniform_(-stdv, stdv)

    def forward(self, inputs):
        """
        Paramters
        ---------
        inputs: dict
            curr_node_id: torch.LongTensor [batch_size]
            next_node_id: torch.LongTensor [batch_size]
            node_feat: torch.FloatTensor [batch_size x num_nodes x node_dim]
            mask: torch.LongTensor [batch_size x num_nodes]
            state: torch.FloatTensor [batch_size x state_dim]

        Returns
        -------
        probs: torch.tensor [batch_size x num_classes]
        """
        #----------------
        # input features
        #----------------
        curr_node_id = inputs["curr_node_id"]
        next_node_id = inputs["next_node_id"]
        node_feat = inputs["node_feats"]
        mask = inputs["mask"]
        state = inputs["state"]

        #---------------------------
        # initial linear projection
        #---------------------------
        node_emb  = self.init_linear_node(node_feat[:, 1:, :]) # [batch_size x num_loc x emb_dim]
        depot_emb = self.init_linear_depot(node_feat[:, 0:1, :2]) # [batch_size x 1 x emb_dim]
        new_node_feat = torch.cat((depot_emb, node_emb), 1) # [batch_size x num_nodes x emb_dim]
        new_node_feat = self.dropout(new_node_feat)

        #---------------
        # preprocessing
        #---------------
        batch_size = curr_node_id.size(0)
        curr_emb = new_node_feat.gather(1, curr_node_id.unsqueeze(-1).expand(batch_size, 1, self.emb_dim))
        next_emb = new_node_feat.gather(1, next_node_id.unsqueeze(-1).expand(batch_size, 1, self.emb_dim))
        if state is not None and self.state_dim > 0:
            state_emb = self.init_linear_state(state) # [batch_size x emb_dim]
            input_q  = torch.cat((curr_emb, next_emb, state_emb[:, None, :]), -1) # [batch_size x 1 x (3*emb_dim)]
        else:
            input_q  = torch.cat((curr_emb, next_emb), -1) # [batch_size x 1 x (2*emb_dim)]
        input_kv = torch.cat((curr_emb.expand_as(new_node_feat), new_node_feat), -1) # [batch_size x num_nodes x (2*emb_dim)]

        #--------------------
        # An attention layer
        #--------------------
        q = torch.matmul(input_q,  self.w_q) # [batch_size x 1 x emb_dim]
        k = torch.matmul(input_kv, self.w_k) # [batch_size x num_nodes x emb_dim]
        v = torch.matmul(input_kv, self.w_v) # [batch_size x num_nodes x emb_dim]
        compatibility = self.norm_factor * torch.matmul(q, k.transpose(-2, -1)) # [batch_size x 1 x num_nodes]
        compatibility[(~mask).unsqueeze(1).expand_as(compatibility)] = -math.inf
        attn = torch.softmax(compatibility, dim=-1)
        h = torch.matmul(attn, v) # [batch_size x 1 x emb_dim]
        h = h.squeeze(1) # [batch_size x emb_dim]
        
        #---------------
        # MLP (decoder)
        #---------------
        for i in range(self.num_mlp_layers):
            h = self.dropout(h)
            h = torch.relu(self.mlp[i](h))
        h = self.dropout(h)
        logits = self.mlp[-1](h)
        probs = F.log_softmax(logits, dim=-1)
        return probs

    def get_inputs(self, tour, first_explained_step, node_feats):
        """
        For TSPTW
        TODO: refactoring

        Parameters
        ----------
        tour: list [seq_length]
        first_explained_step: int
        node_feats np.array [num_nodes x node_dim]

        Returns
        -------
        out: dict (key: data type [data_size])
            curr_node_id: torch.tensor [num_explained_paths]
            next_node_id: torch.tensor [num_explained_paths]
            node_feats: torch.tensor [num_explained_paths x num_nodes x node_dim]
            mask: torch.tensor [num_explained_paths x num_nodes]
            state: torch.tensor [num_explained_paths x state_dim]
        """
        node_feats = {
            key: torch.from_numpy(node_feat.astype(np.float32).copy()).clone()
                    if isinstance(node_feat, np.ndarray) else
                    torch.tensor([node_feat])
            for key, node_feat in node_feats.items()
        }
        if isinstance(tour, np.ndarray):
            tour = torch.from_numpy(tour.astype(np.long).copy()).clone()
        else:
            tour = torch.LongTensor(tour)
        
        out = {"curr_node_id": [], "next_node_id": [], "mask": [], "state": []}
        for step in range(first_explained_step, len(tour) - 1):
            # node ids
            curr_node_id = tour[step]
            next_node_id = tour[step + 1]
            # mask & state
            max_coord = node_feats["grid_size"]
            coord = node_feats["coords"] / max_coord # [num_nodes x coord_dim]
            time_window = node_feats["time_window"] # [num_nodes x 2(start, end)]
            time_window = (time_window - time_window[1:].min()) / time_window[1:].max() # min-max normalization
            curr_time = torch.FloatTensor([0.0])
            raw_coord = node_feats["coords"]
            raw_time_window = node_feats["time_window"]
            raw_curr_time = torch.FloatTensor([0.0])
            num_nodes = len(node_feats["coords"])
            mask = torch.ones(num_nodes, dtype=torch.long) # feasible -> 1, infeasible -> 0
            for i in range(step + 1):
                curr_id = tour[i]
                if i > 0:
                    prev_id = tour[i - 1]
                    raw_curr_time += torch.norm(raw_coord[curr_id] - raw_coord[prev_id])
                    curr_time += torch.norm(coord[curr_id] - coord[prev_id])
                    # visited?
                    mask[curr_id] = 0
                    # curr_time exceeds the time window?
                    mask[curr_time > time_window[:, 1]] = 0
            curr_time = (raw_curr_time - raw_time_window[1:].min()) / raw_time_window[1:].max() # min-max normalization
            out["curr_node_id"].append(curr_node_id)
            out["next_node_id"].append(next_node_id)
            out["mask"].append(mask)
            out["state"].append(curr_time)
        out = {key: torch.stack(value, 0) for key, value in out.items()}
        node_feats = {
            key: node_feat.unsqueeze(0).expand(out["mask"].size(0), *node_feat.size())
            for key, node_feat in node_feats.items()
        }
        out.update({"node_feats": node_feats})
        return out

#---------------
# general class
#---------------
class DecisionPredictor(DecisionPredictorBase):
    def __init__(self, problem, emb_dim, num_mlp_layers, num_classes, drop):
        coord_dim = 2
        self.problem = problem
        if problem == "tsptw":
            node_dim = coord_dim + 2 # + time_window(start, end)
            state_dim = 1 # current_time
        elif problem == "cvrp":
            node_dim = coord_dim + 1 # + demand
            state_dim = 1 # used_capacity
        elif problem == "cvrptw":
            node_dim = coord_dim + 1 + 2 # + demand + time_window(start, end)
            state_dim = 2 # used_capacity + current_time
        else:
            assert False, f"problem {problem} is not supported!"
        super().__init__(coord_dim, node_dim, state_dim, emb_dim, num_mlp_layers, num_classes, drop)