File size: 10,494 Bytes
850c4bf
1acff14
 
 
 
 
850c4bf
 
 
140471a
850c4bf
 
 
140471a
e7e63fd
140471a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7e63fd
850c4bf
1acff14
 
 
 
 
 
 
140471a
 
 
1acff14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
850c4bf
 
 
 
1acff14
850c4bf
 
e7e63fd
850c4bf
 
 
 
 
 
 
1acff14
850c4bf
 
 
 
e7e63fd
 
 
 
 
 
850c4bf
 
 
 
e7e63fd
 
 
 
 
 
 
850c4bf
 
 
 
e7e63fd
 
 
 
 
 
 
1acff14
850c4bf
 
 
 
 
 
 
 
1acff14
850c4bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7e63fd
850c4bf
 
 
 
 
e7e63fd
850c4bf
 
 
 
 
 
 
1acff14
850c4bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140471a
850c4bf
 
 
 
 
 
 
1acff14
850c4bf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import re
import sqlparse

# Load model and tokenizer
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
    "onkolahmet/Qwen2-0.5B-Instruct-SQL-generator", 
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("onkolahmet/Qwen2-0.5B-Instruct-SQL-generator")

# # Few-shot examples to include in each prompt
# examples = [
#     {
#         "question": "Get the names and emails of customers who placed an order in the last 30 days.",
#         "sql": "SELECT name, email FROM customers WHERE order_date >= DATE_SUB(CURDATE(), INTERVAL 30 DAY);"
#     },
#     {
#         "question": "Find all employees with a salary greater than 50000.",
#         "sql": "SELECT * FROM employees WHERE salary > 50000;"
#     },
#     {
#         "question": "List all product names and their categories where the price is below 50.",
#         "sql": "SELECT name, category FROM products WHERE price < 50;"
#     },
#     {
#         "question": "How many users registered in the year 2022?",
#         "sql": "SELECT COUNT(*) FROM users WHERE YEAR(registration_date) = 2022;"
#     }
# ]

def generate_sql(question, context=None):
    # Construct prompt with few-shot examples and context if available
    prompt = "Translate natural language questions to SQL queries.\n\n"
    
    # Add table context if available
    if context and context.strip():
        prompt += f"Table Context:\n{context}\n\n"
    
    # # Add few-shot examples
    # for ex in examples:
    #     prompt += f"Q: {ex['question']}\nSQL: {ex['sql']}\n\n"
    
    # Add the current question
    prompt += f"Q: {question}\nSQL:"
    
    # Tokenize and generate
    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    
    # Generate SQL query
    outputs = model.generate(
        inputs.input_ids,
        max_new_tokens=128,
        do_sample=True,
        eos_token_id=tokenizer.eos_token_id
    )
    
    # Extract and decode only the new generation
    sql_query = tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True)
    return sql_query.strip()

def clean_sql_output(sql_text):
    """
    Clean and deduplicate SQL queries:
    1. Remove comments
    2. Remove duplicate queries
    3. Extract only the most relevant query
    4. Format properly
    """
    # Remove SQL comments (both single line and multi-line)
    sql_text = re.sub(r'--.*?$', '', sql_text, flags=re.MULTILINE)
    sql_text = re.sub(r'/\*.*?\*/', '', sql_text, flags=re.DOTALL)
    
    # Remove markdown code block syntax if present
    sql_text = re.sub(r'```sql|```', '', sql_text)
    
    # Split into individual queries if multiple exist
    if ';' in sql_text:
        queries = [q.strip() for q in sql_text.split(';') if q.strip()]
    else:
        # If no semicolons, try to identify separate queries by SELECT statements
        sql_text_cleaned = re.sub(r'\s+', ' ', sql_text)
        select_matches = list(re.finditer(r'SELECT\s+', sql_text_cleaned, re.IGNORECASE))
        
        if len(select_matches) > 1:
            queries = []
            for i in range(len(select_matches)):
                start = select_matches[i].start()
                end = select_matches[i+1].start() if i < len(select_matches) - 1 else len(sql_text_cleaned)
                queries.append(sql_text_cleaned[start:end].strip())
        else:
            queries = [sql_text]
    
    # Remove empty queries
    queries = [q for q in queries if q.strip()]
    
    if not queries:
        return ""
    
    # If we have multiple queries, need to deduplicate
    if len(queries) > 1:
        # Normalize queries for comparison (lowercase, remove extra spaces)
        normalized_queries = []
        for q in queries:
            # Use sqlparse to format and normalize
            try:
                formatted = sqlparse.format(
                    q + ('' if q.strip().endswith(';') else ';'), 
                    keyword_case='lower',
                    identifier_case='lower', 
                    strip_comments=True,
                    reindent=True
                )
                normalized_queries.append(formatted)
            except:
                # If sqlparse fails, just do basic normalization
                normalized = re.sub(r'\s+', ' ', q.lower().strip())
                normalized_queries.append(normalized)
        
        # Find unique queries
        unique_queries = []
        unique_normalized = []
        
        for i, norm_q in enumerate(normalized_queries):
            if norm_q not in unique_normalized:
                unique_normalized.append(norm_q)
                unique_queries.append(queries[i])
        
        # Choose the most likely correct query:
        # 1. Prefer queries with SELECT
        # 2. Prefer longer queries (often more detailed)
        # 3. Prefer first query if all else equal
        select_queries = [q for q in unique_queries if re.search(r'SELECT\s+', q, re.IGNORECASE)]
        
        if select_queries:
            # Choose the longest SELECT query (likely most detailed)
            best_query = max(select_queries, key=len)
        elif unique_queries:
            # If no SELECT queries, choose the longest query
            best_query = max(unique_queries, key=len)
        else:
            # Fallback to the first query
            best_query = queries[0]
    else:
        best_query = queries[0]
    
    # Clean up the chosen query
    best_query = best_query.strip()
    if not best_query.endswith(';'):
        best_query += ';'
    
    # Final formatting to ensure consistent spacing
    best_query = re.sub(r'\s+', ' ', best_query)
    
    try:
        # Use sqlparse to nicely format the SQL for display
        formatted_sql = sqlparse.format(
            best_query,
            keyword_case='upper',
            identifier_case='lower',
            reindent=True,
            indent_width=2
        )
        return formatted_sql
    except:
        return best_query

def process_input(question, table_context):
    """Function to process user input through the model and return formatted results"""
    if not question.strip():
        return "Please enter a question."
    
    # Generate SQL from the question and context
    raw_sql = generate_sql(question, table_context)
    
    # Clean the SQL output
    cleaned_sql = clean_sql_output(raw_sql)
    
    if not cleaned_sql:
        return "Sorry, I couldn't generate a valid SQL query. Please try rephrasing your question."
    
    return cleaned_sql

# Sample table context examples for the example selector
example_contexts = [
    # Example 1
    """
CREATE TABLE customers (
  id INT PRIMARY KEY,
  name VARCHAR(100),
  email VARCHAR(100),
  order_date DATE
);
    """,
    
    # Example 2
    """
CREATE TABLE products (
  id INT PRIMARY KEY,
  name VARCHAR(100),
  category VARCHAR(50),
  price DECIMAL(10,2),
  stock_quantity INT
);
    """,
    
    # Example 3
    """
CREATE TABLE employees (
  id INT PRIMARY KEY,
  name VARCHAR(100),
  department VARCHAR(50),
  salary DECIMAL(10,2),
  hire_date DATE
);

CREATE TABLE departments (
  id INT PRIMARY KEY,
  name VARCHAR(50),
  manager_id INT,
  budget DECIMAL(15,2)
);
    """
]

# Sample question examples
example_questions = [
    "Get the names and emails of customers who placed an order in the last 30 days.",
    "Find all products with less than 10 items in stock.",
    "List all employees in the Sales department with a salary greater than 50000.",
    "What is the total budget for departments with more than 5 employees?",
    "Count how many products are in each category where the price is greater than 100."
]

# Create the Gradio interface
with gr.Blocks(title="Text to SQL Converter") as demo:
    gr.Markdown("# Text to SQL Query Converter")
    gr.Markdown("Enter your question and optional table context to generate an SQL query.")
    
    with gr.Row():
        with gr.Column():
            question_input = gr.Textbox(
                label="Your Question",
                placeholder="e.g., Find all products with price less than $50",
                lines=2
            )
            
            table_context = gr.Textbox(
                label="Table Context (Optional)",
                placeholder="Enter your database schema or table definitions here...",
                lines=10
            )
            
            submit_btn = gr.Button("Generate SQL Query")
        
        with gr.Column():
            sql_output = gr.Code(
                label="Generated SQL Query",
                language="sql",
                lines=12
            )
    
    # Examples section
    gr.Markdown("### Try some examples")
    
    example_selector = gr.Examples(
        examples=[
            ["List all products in the 'Electronics' category with price less than $500", example_contexts[1]],
            ["Find the total number of employees in each department", example_contexts[2]],
            ["Get customers who placed orders in the last 7 days", example_contexts[0]],
            ["Count the number of products in each category", example_contexts[1]],
            ["Find the average salary by department", example_contexts[2]]
        ],
        inputs=[question_input, table_context]
    )
    
    # Set up the submit button to trigger the process_input function
    submit_btn.click(
        fn=process_input,
        inputs=[question_input, table_context],
        outputs=sql_output
    )
    
    # Also trigger on pressing Enter in the question input
    question_input.submit(
        fn=process_input,
        inputs=[question_input, table_context],
        outputs=sql_output
    )
    
    # Add information about the model
    gr.Markdown("""
    ### About
    This app uses a fine-tuned language model to convert natural language questions into SQL queries.
    
    - **Model**: [onkolahmet/Qwen2-0.5B-Instruct-SQL-generator](https://huggingface.co/onkolahmet/Qwen2-0.5B-Instruct-SQL-generator)
    - **How to use**: 
      1. Enter your question in natural language
      2. If you have specific table schemas, add them in the Table Context field
      3. Click "Generate SQL Query" or press Enter
      
    Note: The model works best when table context is provided, but can generate generic SQL queries without it.
    """)

# Launch the app
demo.launch()