Spaces:
Sleeping
Sleeping
File size: 5,700 Bytes
8f78c8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import pandas as pd
from src.llm_calls import llm_extract_table
from src.parse_response import extract_and_return_data_table
import gradio as gr
def __update_df_state(df_before, df_state, updated_df):
new_df = pd.DataFrame(updated_df)
if df_before is not None:
new_df_before = df_before + [df_state]
else:
new_df_before = [df_state]
new_df_after = [] # Clear redo history
new_df_state = new_df.copy()
return new_df_before, new_df_state, new_df_after
def extract_table_from_chat(
chat_output, df_before, df_state, df_after, llm_type, api_key, key="Medications"
):
try:
updated_df = extract_and_return_data_table(chat_output=chat_output, key=key)
except ValueError:
try:
json_str = llm_extract_table(chat_output, llm_type, api_key)
updated_df = extract_and_return_data_table(chat_output=json_str, key=key)
except KeyError:
gr.Error(
"Cannot extract table information from chat. "
"Please ask the LLM to provide the dataset in JSON format.",
duration=None,
)
updated_df = df_before
except ValueError:
gr.Error(
"Cannot extract table information from chat. "
"Please ask the LLM to provide the dataset in JSON format.",
duration=None,
)
updated_df = df_before
new_df_before, new_df_state, new_df_after = __update_df_state(
df_before, df_state, updated_df
)
return (
new_df_state,
new_df_before,
new_df_state,
new_df_after,
gr.update(interactive=True),
gr.update(interactive=False),
)
def update_llm_selection(selected_llm):
if selected_llm == "OpenAI":
return gr.update(label="OpenAI API Key", placeholder="Enter OpenAI API Key")
elif selected_llm == "Perplexity":
return gr.update(
label="Perplexity API Key", placeholder="Enter Perplexity API Key"
)
else:
raise ValueError("Invalid LLM type selected.")
def edit_or_save_changes(updated_df, df_before, df_state, df_after, current_edit_mode):
"""Save user changes, update undo history."""
new_df = pd.DataFrame(updated_df)
new_df_before = df_before + [df_state.copy()]
new_df_after = [] # Clear redo history
new_df_state = new_df.copy()
if current_edit_mode == "Save":
# User wants to move from save to edit
return (
new_df,
new_df_before,
new_df_state,
new_df_after,
gr.update(
interactive=True
), # prev button is now enabled as there was a change
gr.update(interactive=False), # next button
gr.update(interactive=True), # df display
gr.update(value="Edit"), # edit button
"Edit",
)
elif current_edit_mode == "Edit":
return (
new_df_state,
new_df_before,
new_df_state,
new_df_after,
gr.update(interactive=False), # prev button
gr.update(interactive=False), # next button
gr.update(interactive=True), # df display
gr.update(value="Save"), # edit button
"Save",
)
else:
raise ValueError(f"Wrong edit mode selected: {current_edit_mode}. ")
def undo(df_before, df_state, df_after):
"""Undo user change without enabling Save button."""
if not df_before:
return (
df_state,
df_before,
df_state,
df_after,
gr.update(interactive=False),
gr.update(interactive=(len(df_after) > 0)),
)
new_df_after = df_after + [df_state.copy()]
new_df_state = df_before[-1]
new_df_before = df_before[:-1]
return (
new_df_state,
new_df_before,
new_df_state,
new_df_after,
gr.update(interactive=(len(new_df_before) > 0)), # prev button
gr.update(interactive=(len(new_df_after) > 0)), # next button
)
def redo(df_before, df_state, df_after):
"""Redo user change without enabling Save button."""
if not df_after:
return (
df_state,
df_before,
df_state,
df_after,
gr.update(interactive=(len(df_before) > 0)),
gr.update(interactive=False),
)
if df_state is None:
df_state = df_after
new_df_before = df_before + [df_state.copy()]
new_df_state = df_after[-1]
new_df_after = df_after[:-1]
return (
new_df_state,
new_df_before,
new_df_state,
new_df_after,
gr.update(interactive=(len(new_df_before) > 0)),
gr.update(interactive=(len(new_df_after) > 0)),
)
# def toggle_save_edit(button_state, dataframe_display):
# if button_state == "Edit":
# return "Save", gr.update(interactive=True), gr.update(interactive=True) # Enable DataFrame editing
# else:
# return "Edit", gr.update(interactive=True), gr.update(interactive=False) # Disable DataFrame editing
#
def upload_file(file, df_before, df_state, df_after):
if file is None:
return gr.update()
df = pd.read_excel(file.name, engine="openpyxl")
new_df_before, new_df_state, new_df_after = __update_df_state(
df_before, df_state, df
)
# print("Uploaded DataFrame:\n", df) # Print DataFrame to console
return (
df,
new_df_before,
df,
new_df_after,
gr.update(interactive=False),
gr.update(interactive=False),
)
|