Spaces:
Sleeping
Sleeping
File size: 7,394 Bytes
433b3a7 71d2e12 433b3a7 71d2e12 f98f63e 71d2e12 433b3a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
from functools import partial
import gradio as gr
from src.gradio_utils import (
extract_table_from_chat,
upload_file,
redo,
undo,
edit_or_save_changes,
update_llm_selection,
)
from src.llm_calls import query_llm
from src.data_handler import generate_excel_base64
SYSTEM_PROMPT = """You are a pharmacology assistant specialized in analyzing and structuring medical data.
Inputs You Receive:
A JSON dataset representing medications for Retinitis Pigmentosa
A user query requesting additional details to be added to the dataset
Your Task:
Analyze the dataset and determine what new information is needed
Research and generate new details based on the user’s request
Enhance the dataset by adding the requested information
Ensure completeness: The updated dataset must always include all medications
Your Output:
A succinct response explaining your findings and how the dataset was extended
A fully updated JSON dataset, strictly following this format:
json
Copy
Edit
{
"Medications": [
{"Name": "Medication Name", "key1": "value1", "key2": "value2", ...},
{"Name": "Medication Name", "key1": "value1", "key2": "value2", ...}
]
}
Key Requirements:
- JSON output is mandatory in every response
- All medications must be present in the JSON, even if unchanged
- Extend the dataset with newly generated information—do not just retrieve existing data
- No repetition of the example JSON—only return the updated data
- Verify the JSON before responding to ensure it is well-formed and complete
Always structure your response clearly:
- Text Summary: Explanation of findings and dataset extensions
- Updated JSON Dataset: Full dataset with all medications, including new information
- References & Sources (if applicable)
"""
with gr.Blocks(theme=gr.themes.Glass()) as app:
df_before = gr.State([]) # Undo history
df_state = gr.State(None) # Current DataFrame
df_after = gr.State([]) # Redo history
last_response = gr.State("") # Store last LLM response
edit_mode = gr.State("Edit") # Track edit mode
base64data = gr.State(None)
with gr.Sidebar():
gr.Markdown("### Configuration")
llm_type = gr.Radio(
choices=["Perplexity", "OpenAI"], label="LLM Type", value="Perplexity"
)
api_key = gr.Textbox(
label="OpenAI API Key",
placeholder=f"Enter {llm_type.value} Key",
interactive=True,
type="password"
)
gr.Markdown("### Upload existing data")
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
gr.Markdown("### Download table to Excel")
excel_output = gr.State(None)
excel_data = gr.Textbox(visible=False)
download_button = gr.DownloadButton(label="Download dataset")
download_button.click(
generate_excel_base64, inputs=[df_state], outputs=[excel_data]
)
excel_data.change(
None,
[excel_data],
None,
js="""
(base64Data) => {
const binaryString = atob(base64Data);
const len = binaryString.length;
const bytes = new Uint8Array(len);
for (let i = 0; i < len; i++) {
bytes[i] = binaryString.charCodeAt(i);
}
const blob = new Blob([bytes], { type: "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" });
const link = document.createElement("a");
link.href = URL.createObjectURL(blob);
link.download = "dataset.xlsx";
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
}
""",
)
llm_type.change(update_llm_selection, inputs=[llm_type], outputs=[api_key])
with gr.Accordion("System Prompt", open=False):
system_prompt_box = gr.Textbox(
value=SYSTEM_PROMPT, interactive=True, lines=10, label="System Prompt"
)
gr.Markdown("## Medications Data CoPilot")
# Chat Interface
chat = gr.ChatInterface(
fn=query_llm,
type="messages",
description="Chat with an LLM to create a data representation of medications.",
stop_btn=False,
save_history=False,
additional_inputs=[df_state, llm_type, api_key, system_prompt_box],
examples=[
[
"List 10 medications that are known to be effective for Retinitis Pigmentosa"
],
[
"Add a column specifying if the medication passes the Retinal Blood Barrier"
],
["Add the safety profile for each medication"],
["Create four columns, each specifying each of the ADME profile factors"],
[
"Categorize each column into up to five categories, for simple classification."
],
],
)
with gr.Row():
gr.Markdown("### Medications Table")
with gr.Row():
update_button = gr.Button(
"Update table using the chat information", scale=8, interactive=True
)
with gr.Row():
dataframe_display = gr.DataFrame(interactive=False)
with gr.Row():
prev_button = gr.Button("<-", interactive=False, scale=1)
edit_save_button = gr.Button("Edit", interactive=True, scale=2)
next_button = gr.Button("->", interactive=False, scale=1)
# Save user changes
edit_save_button.click(
edit_or_save_changes,
inputs=[dataframe_display, df_before, df_state, df_after, edit_mode],
outputs=[
dataframe_display, # Updated DataFrame
df_before, # Undo history
df_state, # Current state
df_after, # Redo history
prev_button, # Update prev button
next_button, # Update next button
dataframe_display, # Update DataFrame interactivity
edit_save_button, # Update button label
edit_mode, # Update edit mode
],
)
# Undo button
prev_button.click(
undo,
inputs=[df_before, df_state, df_after],
outputs=[
dataframe_display,
df_before,
df_state,
df_after,
prev_button,
next_button,
],
)
# Redo button
next_button.click(
redo,
inputs=[df_before, df_state, df_after],
outputs=[
dataframe_display,
df_before,
df_state,
df_after,
prev_button,
next_button,
],
)
# File upload event
file_upload.change(
upload_file,
inputs=[file_upload, df_before, df_state, df_after],
outputs=[
dataframe_display,
df_before,
df_state,
df_after,
prev_button,
next_button,
],
)
# Update button copies chat history to text box
update_button.click(
partial(extract_table_from_chat, key="Medications"),
inputs=[chat.chatbot, df_before, df_state, df_after, llm_type, api_key],
outputs=[
dataframe_display,
df_before,
df_state,
df_after,
prev_button,
next_button,
],
)
# Launch App
app.launch()
|