File size: 2,064 Bytes
d58981a
c379e84
d58981a
c379e84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d14bdf
 
 
 
 
 
 
c379e84
 
 
2d14bdf
c379e84
2d14bdf
 
 
 
c379e84
2d14bdf
c379e84
 
2d14bdf
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os

# os.system("sudo apt-get install xclip")

import nltk
import pyclip
import pytesseract
from nltk.tokenize import sent_tokenize
from transformers import MarianMTModel, MarianTokenizer
# Newly added below
from fastapi import FastAPI, File, UploadFile, Body, Depends, HTTPException
from fastapi.security.api_key import APIKeyHeader
from typing import Optional
from fastapi.encoders import jsonable_encoder

API_KEY = os.environ.get("API_KEY")

app = FastAPI()
api_key_header = APIKeyHeader(name="api_key", auto_error=False)

def get_api_key(api_key: Optional[str] = Depends(api_key_header)):
    if api_key is None or api_key != API_KEY:
        raise HTTPException(status_code=401, detail="Unauthorized access")
    return api_key

@app.post("/api/ocr", response_model=dict)
async def ocr(
    api_key: str = Depends(get_api_key),
    image: UploadFile = File(...),
    languages: list = Body(["eng"])
):
    # if api_key != API_KEY:
    #     return {"error": "Invalid API key"}, 401

    try:
        text = image_to_string(await image.read(), lang="+".join(languages))
    except Exception as e:
        return {"error": str(e)}, 500

    return jsonable_encoder({"text": text})


#@app.post("/api/translate", response_model=dict)
#async def translate(
    #api_key: str = Depends(get_api_key),
    #text: str = Body(...),
    #src: str = "en",
    #trg: str = "zh",
#):
    # if api_key != API_KEY:
    #     return {"error": "Invalid API key"}, 401

   # tokenizer, model = get_model(src, trg)

   # translated_text = ""
   # for sentence in sent_tokenize(text):
    #    translated_sub = model.generate(**tokenizer(sentence, return_tensors="pt"))[0]
     #   translated_text += tokenizer.decode(translated_sub, skip_special_tokens=True) + "\n"

   # return jsonable_encoder({"translated_text": translated_text})


#def get_model(src: str, trg: str):
   # model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
    #tokenizer = MarianTokenizer.from_pretrained(model_name)
    #model = MarianMTModel.from_pretrained(model_name)
    #return tokenizer, model