Spaces:
Runtime error
Runtime error
# OCR Translate v0.2 | |
import os | |
os.system("sudo apt-get install xclip") | |
import gradio as gr | |
import nltk | |
import pyclip | |
import pytesseract | |
from nltk.tokenize import sent_tokenize | |
from transformers import MarianMTModel, MarianTokenizer | |
# Newly added below | |
from fastapi import FastAPI, File, UploadFile, Body, Security | |
from fastapi.security.api_key import APIKeyHeader | |
from fastapi.encoders import jsonable_encoder | |
API_KEY = os.environ.get("API_KEY") | |
app = FastAPI() | |
api_key_header = APIKeyHeader(name="api_key", auto_error=False) | |
def get_api_key(api_key: Optional[str] = Depends(security)): | |
if api_key is None or api_key != API_KEY: | |
raise HTTPException(status_code=401, detail="Unauthorized access") | |
return api_key | |
async def ocr( | |
api_key: str = Depends(get_api_key), | |
image: UploadFile = File(...), | |
languages: list = Body(["eng"]) | |
): | |
# if api_key != API_KEY: | |
# return {"error": "Invalid API key"}, 401 | |
try: | |
text = image_to_string(await image.read(), lang="+".join(languages)) | |
except Exception as e: | |
return {"error": str(e)}, 500 | |
return jsonable_encoder({"text": text}) | |
async def translate( | |
api_key: str = Depends(get_api_key), | |
text: str = Body(...), | |
src: str = "en", | |
trg: str = "zh", | |
): | |
# if api_key != API_KEY: | |
# return {"error": "Invalid API key"}, 401 | |
tokenizer, model = get_model(src, trg) | |
translated_text = "" | |
for sentence in sent_tokenize(text): | |
translated_sub = model.generate(**tokenizer(sentence, return_tensors="pt"))[0] | |
translated_text += tokenizer.decode(translated_sub, skip_special_tokens=True) + "\n" | |
return jsonable_encoder({"translated_text": translated_text}) | |
def get_model(src: str, trg: str): | |
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
model = MarianMTModel.from_pretrained(model_name) | |
return tokenizer, model | |
# =============================================== | |
nltk.download('punkt') | |
OCR_TR_DESCRIPTION = '''# OCR Translate v0.2 | |
<div id="content_align">OCR translation system based on Tesseract</div>''' | |
# Image path | |
img_dir = "./data" | |
# Get tesseract language list | |
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] | |
# Translation model selection | |
def model_choice(src="en", trg="zh"): | |
# https://huggingface.co/Helsinki-NLP/opus-mt-zh-en | |
# https://huggingface.co/Helsinki-NLP/opus-mt-en-zh | |
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # Model name | |
tokenizer = MarianTokenizer.from_pretrained(model_name) # tokenizer | |
model = MarianMTModel.from_pretrained(model_name) # Model | |
return tokenizer, model | |
# Convert tesseract language list to pytesseract language | |
def ocr_lang(lang_list): | |
lang_str = "" | |
lang_len = len(lang_list) | |
if lang_len == 1: | |
return lang_list[0] | |
else: | |
for i in range(lang_len): | |
lang_list.insert(lang_len - i, "+") | |
lang_str = "".join(lang_list[:-1]) | |
return lang_str | |
# ocr tesseract | |
def ocr_tesseract(img, languages): | |
ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages)) | |
return ocr_str | |
# Clear | |
def clear_content(): | |
return None | |
# copy to clipboard | |
def cp_text(input_text): | |
# sudo apt-get install xclip | |
try: | |
pyclip.copy(input_text) | |
except Exception as e: | |
print("sudo apt-get install xclip") | |
print(e) | |
# clear clipboard | |
def cp_clear(): | |
pyclip.clear() | |
# translate | |
def translate(input_text, inputs_transStyle): | |
# reference:https://huggingface.co/docs/transformers/model_doc/marian | |
if input_text is None or input_text == "": | |
return "System prompt: There is no content to translate!" | |
# Select translation model | |
trans_src, trans_trg = inputs_transStyle.split("-")[0], inputs_transStyle.split("-")[1] | |
tokenizer, model = model_choice(trans_src, trans_trg) | |
translate_text = "" | |
input_text_list = input_text.split("\n\n") | |
translate_text_list_tmp = [] | |
for i in range(len(input_text_list)): | |
if input_text_list[i] != "": | |
translate_text_list_tmp.append(input_text_list[i]) | |
for i in range(len(translate_text_list_tmp)): | |
translated_sub = model.generate( | |
**tokenizer(sent_tokenize(translate_text_list_tmp[i]), return_tensors="pt", truncation=True, padding=True)) | |
tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub] | |
translate_text_sub = "".join(tgt_text_sub) | |
translate_text = translate_text + "\n\n" + translate_text_sub | |
return translate_text[2:] | |
def main(): | |
with gr.Blocks(css='style.css') as ocr_tr: | |
gr.Markdown(OCR_TR_DESCRIPTION) | |
# -------------- OCR text extraction -------------- | |
with gr.Box(): | |
with gr.Row(): | |
gr.Markdown("### Step 01: Text Extraction") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
inputs_img = gr.Image(image_mode="RGB", source="upload", type="pil", label="image") | |
with gr.Row(): | |
inputs_lang = gr.CheckboxGroup(choices=["chi_sim", "eng"], | |
type="value", | |
value=['eng'], | |
label='language') | |
with gr.Row(): | |
clear_img_btn = gr.Button('Clear') | |
ocr_btn = gr.Button(value='OCR Extraction', variant="primary") | |
with gr.Column(): | |
with gr.Row(): | |
outputs_text = gr.Textbox(label="Extract content", lines=20) | |
with gr.Row(): | |
inputs_transStyle = gr.Radio(choices=["zh-en", "en-zh"], | |
type="value", | |
value="zh-en", | |
label='translation mode') | |
with gr.Row(): | |
clear_text_btn = gr.Button('Clear') | |
translate_btn = gr.Button(value='Translate', variant="primary") | |
with gr.Row(): | |
example_list = [["./data/test.png", ["eng"]], ["./data/test02.png", ["eng"]], | |
["./data/test03.png", ["chi_sim"]]] | |
gr.Examples(example_list, [inputs_img, inputs_lang], outputs_text, ocr_tesseract, cache_examples=False) | |
# -------------- translate -------------- | |
with gr.Box(): | |
with gr.Row(): | |
gr.Markdown("### Step 02: Translation") | |
with gr.Row(): | |
outputs_tr_text = gr.Textbox(label="Translate Content", lines=20) | |
with gr.Row(): | |
cp_clear_btn = gr.Button(value='Clear Clipboard') | |
cp_btn = gr.Button(value='Copy to clipboard', variant="primary") | |
# ---------------------- OCR Tesseract ---------------------- | |
ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[ | |
outputs_text,]) | |
clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img]) | |
# ---------------------- translate ---------------------- | |
translate_btn.click(fn=translate, inputs=[outputs_text, inputs_transStyle], outputs=[outputs_tr_text]) | |
clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text]) | |
# ---------------------- copy to clipboard ---------------------- | |
cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[]) | |
cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[]) | |
ocr_tr.launch(inbrowser=True) | |
if __name__ == '__main__': | |
main() | |