import gradio as gr import os from huggingface_hub import InferenceClient # Get the token from the "HF_TOKEN" environment variable token = os.getenv("HF_TOKEN") # Create a client for the Salesforce/codet5-large model using the token client = InferenceClient("Salesforce/codet5-large", token=token) def generate_code( task_description, max_tokens, temperature, top_p, ): # 2. Create a prompt using task description prompt = task_description # 3. Generate code based on the description response = client.text_generation( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, ) # Since the response is already a string, just return it generated_code = response return generated_code # 4. Create Gradio interface with gr.Blocks() as demo: gr.Markdown("# 🚀 CodeT5 Code Generator") with gr.Row(): task_input = gr.Textbox( lines=3, placeholder="Describe the task in natural language...", label="Task Description" ) with gr.Row(): max_tokens = gr.Slider(1, 2048, value=100, step=1, label="Max Tokens") temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") with gr.Row(): submit_button = gr.Button("Generate Code 🚀") output = gr.Textbox(lines=10, label="Generated Code") # 5. Button click triggers code generation submit_button.click( generate_code, inputs=[task_input, max_tokens, temperature, top_p], outputs=output, ) if __name__ == "__main__": demo.launch()