|
import gradio as gr |
|
import torch |
|
import torchaudio |
|
from transformers import AutoModelForCausalLM |
|
from outetts.wav_tokenizer.decoder import WavTokenizer |
|
from yarngpt.audiotokenizer import AudioTokenizer |
|
|
|
|
|
def initialize_model(): |
|
|
|
hf_path = "saheedniyi/YarnGPT" |
|
wav_tokenizer_config_path = "wavtokenizer_config.yaml" |
|
wav_tokenizer_model_path = "wavtokenizer_model.ckpt" |
|
|
|
|
|
audio_tokenizer = AudioTokenizer( |
|
hf_path, wav_tokenizer_model_path, wav_tokenizer_config_path |
|
) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(hf_path, torch_dtype="auto").to(audio_tokenizer.device) |
|
|
|
return model, audio_tokenizer |
|
|
|
|
|
def generate_speech(text, speaker_name): |
|
|
|
prompt = audio_tokenizer.create_prompt(text, speaker_name) |
|
|
|
|
|
input_ids = audio_tokenizer.tokenize_prompt(prompt) |
|
|
|
|
|
output = model.generate( |
|
input_ids=input_ids, |
|
temperature=0.1, |
|
repetition_penalty=1.1, |
|
max_length=4000, |
|
) |
|
|
|
|
|
codes = audio_tokenizer.get_codes(output) |
|
|
|
|
|
audio = audio_tokenizer.get_audio(codes) |
|
|
|
|
|
temp_path = "output.wav" |
|
torchaudio.save(temp_path, audio, sample_rate=24000) |
|
|
|
return temp_path |
|
|
|
|
|
print("Loading model...") |
|
model, audio_tokenizer = initialize_model() |
|
print("Model loaded!") |
|
|
|
|
|
speakers = ["idera", "emma", "jude", "osagie", "tayo", "zainab", "joke", "regina", "remi", "umar", "chinenye"] |
|
|
|
demo = gr.Interface( |
|
fn=generate_speech, |
|
inputs=[ |
|
gr.Textbox(lines=5, placeholder="Enter text here..."), |
|
gr.Dropdown(choices=speakers, label="Speaker", value="idera") |
|
], |
|
outputs=gr.Audio(type="filepath"), |
|
title="YarnGPT: Nigerian Accented Text-to-Speech", |
|
description="Generate natural-sounding Nigerian accented speech from text." |
|
) |
|
|
|
demo.launch() |