tts / app.py
okewunmi's picture
create app.py
b6fd3a8 verified
raw
history blame
2.14 kB
import gradio as gr
import torch
import torchaudio
from transformers import AutoModelForCausalLM
from outetts.wav_tokenizer.decoder import WavTokenizer
from yarngpt.audiotokenizer import AudioTokenizer
# Initialize the model (this runs when the app starts)
def initialize_model():
# Download model and tokenizer
hf_path = "saheedniyi/YarnGPT"
wav_tokenizer_config_path = "wavtokenizer_config.yaml"
wav_tokenizer_model_path = "wavtokenizer_model.ckpt"
# Create AudioTokenizer
audio_tokenizer = AudioTokenizer(
hf_path, wav_tokenizer_model_path, wav_tokenizer_config_path
)
# Load model
model = AutoModelForCausalLM.from_pretrained(hf_path, torch_dtype="auto").to(audio_tokenizer.device)
return model, audio_tokenizer
# Generate audio from text
def generate_speech(text, speaker_name):
# Create prompt
prompt = audio_tokenizer.create_prompt(text, speaker_name)
# Tokenize prompt
input_ids = audio_tokenizer.tokenize_prompt(prompt)
# Generate output
output = model.generate(
input_ids=input_ids,
temperature=0.1,
repetition_penalty=1.1,
max_length=4000,
)
# Convert to audio codes
codes = audio_tokenizer.get_codes(output)
# Convert codes to audio
audio = audio_tokenizer.get_audio(codes)
# Save audio temporarily
temp_path = "output.wav"
torchaudio.save(temp_path, audio, sample_rate=24000)
return temp_path
# Load model globally
print("Loading model...")
model, audio_tokenizer = initialize_model()
print("Model loaded!")
# Create Gradio interface
speakers = ["idera", "emma", "jude", "osagie", "tayo", "zainab", "joke", "regina", "remi", "umar", "chinenye"]
demo = gr.Interface(
fn=generate_speech,
inputs=[
gr.Textbox(lines=5, placeholder="Enter text here..."),
gr.Dropdown(choices=speakers, label="Speaker", value="idera")
],
outputs=gr.Audio(type="filepath"),
title="YarnGPT: Nigerian Accented Text-to-Speech",
description="Generate natural-sounding Nigerian accented speech from text."
)
demo.launch()