File size: 8,984 Bytes
7a3d1c9
9b5b26a
 
 
c19d193
7a3d1c9
 
 
6aae614
7a3d1c9
 
 
 
 
8fe992b
9b5b26a
 
7a3d1c9
5df72d6
9b5b26a
3d1237b
9b5b26a
7a3d1c9
9b5b26a
 
 
 
 
7a3d1c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
98ea7ec
 
 
7a3d1c9
98ea7ec
 
 
 
 
 
 
 
 
 
 
 
7a3d1c9
 
 
98ea7ec
 
 
 
7a3d1c9
98ea7ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3d1c9
98ea7ec
 
34fbe03
 
 
 
 
 
 
7a3d1c9
34fbe03
98ea7ec
34fbe03
98ea7ec
34fbe03
98ea7ec
34fbe03
 
98ea7ec
34fbe03
 
98ea7ec
 
 
7a3d1c9
98ea7ec
7a3d1c9
98ea7ec
 
 
 
 
 
 
34fbe03
98ea7ec
 
7a3d1c9
34fbe03
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3d1c9
8c01ffb
6aae614
ae7a494
7a3d1c9
 
ae7a494
7a3d1c9
ae7a494
e121372
f75e0f5
bf6d34c
db6fd28
fe328e0
13d500a
7a3d1c9
 
 
 
 
 
 
 
 
 
8c01ffb
 
7a3d1c9
 
 
 
 
 
 
9b5b26a
44db6b6
8c01ffb
861422e
 
7a3d1c9
8c01ffb
8fe992b
98ea7ec
 
 
 
 
 
7a3d1c9
98ea7ec
 
 
 
 
e2bd06c
 
861422e
8fe992b
 
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from smolagents import CodeAgent, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
import os
import asyncio
import json
from tools.final_answer import FinalAnswerTool
from tools.web_search import DuckDuckGoSearchTool
from bs4 import BeautifulSoup
from duckduckgo_search import DDGS
import re
from typing import List, Dict, Any

from Gradio_UI import GradioUI

#################################################################
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that does nothing yet
    Args:
        arg1: the first argument
        arg2: the second argument
    """
    return "What magic will you build ?"
##############################################################

@tool
def visit_webpage(url: str) -> Dict[str, Any]:
    """Visits a webpage and extracts ingredients and instructions.
    Args:
        url: The recipe URL.
    Returns:
        A dictionary containing 'ingredients' and 'instructions', or an error message if the URL is invalid.
    """
    try:
        # Validate URL format before making a request
        if not url.startswith("http"):
            return {"error": f"Invalid URL format: {url}"}

        response = requests.get(url, timeout=10, headers={
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
        })
        response.raise_for_status()  # Raise an error for 404, 403, etc.

        soup = BeautifulSoup(response.content, 'html.parser')

        # Extract ingredients
        ingredients = [tag.get_text(strip=True) for tag in soup.select('ul li, .ingredient')]
        if not ingredients:
            ingredients = [tag.get_text(strip=True) for tag in soup.find_all('li') if "ingredient" in tag.get_text(strip=True).lower()]

        # Extract instructions
        instructions = [tag.get_text(strip=True) for tag in soup.select('ol li, .instruction, .step')]
        if not instructions:
            instructions = [tag.get_text(strip=True) for tag in soup.find_all('p') if "step" in tag.get_text(strip=True).lower()]

        return {
            "ingredients": ingredients if ingredients else [],
            "instructions": instructions if instructions else []
        }

    except requests.exceptions.HTTPError as http_err:
        return {"error": f"HTTP error {response.status_code}: {http_err}"}

    except requests.exceptions.RequestException as req_err:
        return {"error": f"Request failed: {req_err}"}

    except Exception as e:
        return {"error": f"Failed to scrape {url}: {str(e)}"}

###############################################################

@tool
def web_search(query: str) -> str:
    """Searches the web using DuckDuckGo and formats output in a code block.

    Args:
        query: The search query.

    Returns:
        A string formatted as Python code.
    """
    result = DuckDuckGoSearchTool()(query)

    # 🔹 Ensure the response is wrapped as Python code
    return f"{result}"

###############################################################

@tool
def search_flights(departure: str, destination: str, date: str) -> str:
    """Finds flights from departure to destination on the given date using DuckDuckGo.

    Args:
        departure: The city or airport code where the flight starts.
        destination: The city or airport code where the flight ends.
        date: The departure date in YYYY-MM-DD format.

    Returns:
        A string containing flight search results.
    """
    query = f"flights from {departure} to {destination} on {date}"
    search_results = DuckDuckGoSearchTool()(query)  # Calls DuckDuckGo search
    return f"Here are some flight options:\n{search_results}"

################################################################

API_KEY = os.getenv("FREECURRENCYAPI_KEY")  # 🔹 Your API key

@tool
def convert_currency(amount: float, from_currency: str, to_currency: str) -> str:
    """Converts currency from one to another using FreeCurrencyAPI.

    Args:
        amount: The amount to convert.
        from_currency: The original currency (e.g., "USD").
        to_currency: The target currency (e.g., "EUR").

    Returns:
        The converted amount in the target currency.
    """
    try:
        url = f"https://api.freecurrencyapi.com/v1/latest?apikey={API_KEY}&base_currency={from_currency.upper()}"

        response = requests.get(url).json()

        # ✅ Check if the API returned valid exchange rates
        if "data" in response and to_currency.upper() in response["data"]:
            rate = response["data"][to_currency.upper()]
            converted_amount = amount * rate
            return f"{amount} {from_currency.upper()} is approximately {converted_amount:.2f} {to_currency.upper()}."

        return f"Error: Could not find exchange rate for {to_currency.upper()}."

    except Exception as e:
        return f"Error fetching exchange rates: {str(e)}"
########################################################################

chat_history = []  # Store conversation history

@tool
def chat_with_ai(message: str) -> str:
    """A tool that allows the AI to engage in general conversation with memory.
    Args:
        message: The user's message.
    """
    global chat_history

    # Keep the last 5 messages for context
    if len(chat_history) > 5:
        chat_history.pop(0)

    # Add user message to history
    chat_history.append({"role": "user", "content": message})

    # Format the history as input for the AI model
    formatted_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)

    # ✅ Ensure AI response is handled correctly
    try:
        response = model(formatted_history)  # Call model

        # ✅ Handle both string and dictionary responses
        if isinstance(response, dict):
            response_text = response.get("text", str(response))  # Extract text if available
        else:
            response_text = str(response)  # Convert non-dict responses to string

        # Add AI response to history
        chat_history.append({"role": "assistant", "content": response_text})
        return response_text

    except Exception as e:
        return f"Error processing chat: {str(e)}"
#########################################################################

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"
#########################################################################

final_answer = FinalAnswerTool()

########################################################################

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'

model = HfApiModel(
max_tokens=512,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
#deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
#deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
#Qwen/Qwen2.5-Coder-32B-Instruct
#deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
#oieieio/Qwen2.5-0.5B-Instruct
#oieieio/meta-llama-Llama-3.2-1B-Instruct
###############################################################################





##############################################################################


# web_search settings, specific/custom
hotels = web_search("Recommended hotels in Paris with pricing and location details")
restaurants = web_search("Top-rated local restaurants in Paris, different budgets and cuisines")

# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)

agent = CodeAgent(
    model=model,
    tools=[
        final_answer,
        get_current_time_in_timezone,
        my_custom_tool,
        chat_with_ai,           # Regular chat tool
        search_flights,
        web_search,
        #scrape_webpage,
        convert_currency,
        #get_weather,
        #generate_ai_image
    ],
    max_steps=8,
    verbosity_level=5,
    prompt_templates=prompt_templates
)

GradioUI(agent).launch()