Spaces:
Sleeping
Sleeping
File size: 14,237 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
networks = ['BaseNetwork', 'Discriminator', 'ASPP']
# Base model borrows from PEN-NET
# https://github.com/researchmm/PEN-Net-for-Inpainting
class BaseNetwork(nn.Module):
def __init__(self):
super(BaseNetwork, self).__init__()
def print_network(self):
if isinstance(self, list):
self = self[0]
num_params = 0
for param in self.parameters():
num_params += param.numel()
print('Network [%s] was created. Total number of parameters: %.1f million. '
'To see the architecture, do print(network).' % (type(self).__name__, num_params / 1000000))
def init_weights(self, init_type='normal', gain=0.02):
'''
initialize network's weights
init_type: normal | xavier | kaiming | orthogonal
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/9451e70673400885567d08a9e97ade2524c700d0/models/networks.py#L39
'''
def init_func(m):
classname = m.__class__.__name__
if classname.find('InstanceNorm2d') != -1:
if hasattr(m, 'weight') and m.weight is not None:
nn.init.constant_(m.weight.data, 1.0)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias.data, 0.0)
elif hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
nn.init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
nn.init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'xavier_uniform':
nn.init.xavier_uniform_(m.weight.data, gain=1.0)
elif init_type == 'kaiming':
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
nn.init.orthogonal_(m.weight.data, gain=gain)
elif init_type == 'none': # uses pytorch's default init method
m.reset_parameters()
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias.data, 0.0)
self.apply(init_func)
# propagate to children
for m in self.children():
if hasattr(m, 'init_weights'):
m.init_weights(init_type, gain)
# temporal patch gan: from Free-form Video Inpainting with 3D Gated Convolution and Temporal PatchGAN in 2019 ICCV
# todo: debug this model
class Discriminator(BaseNetwork):
def __init__(self, in_channels=3, use_sigmoid=False, use_spectral_norm=True, init_weights=True):
super(Discriminator, self).__init__()
self.use_sigmoid = use_sigmoid
nf = 64
self.conv = nn.Sequential(
DisBuildingBlock(in_channel=in_channels, out_channel=nf * 1, kernel_size=(3, 5, 5), stride=(1, 2, 2),
padding=1, use_spectral_norm=use_spectral_norm),
# nn.InstanceNorm2d(64, track_running_stats=False),
nn.LeakyReLU(0.2, inplace=True),
DisBuildingBlock(in_channel=nf * 1, out_channel=nf * 2, kernel_size=(3, 5, 5), stride=(1, 2, 2),
padding=(1, 2, 2), use_spectral_norm=use_spectral_norm),
# nn.InstanceNorm2d(128, track_running_stats=False),
nn.LeakyReLU(0.2, inplace=True),
DisBuildingBlock(in_channel=nf * 2, out_channel=nf * 4, kernel_size=(3, 5, 5), stride=(1, 2, 2),
padding=(1, 2, 2), use_spectral_norm=use_spectral_norm),
# nn.InstanceNorm2d(256, track_running_stats=False),
nn.LeakyReLU(0.2, inplace=True),
DisBuildingBlock(in_channel=nf * 4, out_channel=nf * 4, kernel_size=(3, 5, 5), stride=(1, 2, 2),
padding=(1, 2, 2), use_spectral_norm=use_spectral_norm),
# nn.InstanceNorm2d(256, track_running_stats=False),
nn.LeakyReLU(0.2, inplace=True),
DisBuildingBlock(in_channel=nf * 4, out_channel=nf * 4, kernel_size=(3, 5, 5), stride=(1, 2, 2),
padding=(1, 2, 2), use_spectral_norm=use_spectral_norm),
# nn.InstanceNorm2d(256, track_running_stats=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv3d(nf * 4, nf * 4, kernel_size=(3, 5, 5),
stride=(1, 2, 2), padding=(1, 2, 2))
)
if init_weights:
self.init_weights()
def forward(self, xs):
# B, C, T, H, W = xs.shape
feat = self.conv(xs)
if self.use_sigmoid:
feat = torch.sigmoid(feat)
return feat
class DisBuildingBlock(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride, padding, use_spectral_norm):
super(DisBuildingBlock, self).__init__()
self.block = self._getBlock(in_channel, out_channel, kernel_size, stride, padding, use_spectral_norm)
def _getBlock(self, in_channel, out_channel, kernel_size, stride, padding, use_spectral_norm):
feature_conv = nn.Conv3d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size,
stride=stride, padding=padding, bias=not use_spectral_norm)
if use_spectral_norm:
feature_conv = nn.utils.spectral_norm(feature_conv)
return feature_conv
def forward(self, inputs):
out = self.block(inputs)
return out
class ASPP(nn.Module):
def __init__(self, input_channels, output_channels, rate=[1, 2, 4, 8]):
super(ASPP, self).__init__()
self.input_channels = input_channels
self.output_channels = output_channels
self.rate = rate
for i in range(len(rate)):
self.__setattr__('conv{}'.format(str(i).zfill(2)), nn.Sequential(
nn.Conv2d(input_channels, output_channels // len(rate), kernel_size=3, dilation=rate[i],
padding=rate[i]),
nn.LeakyReLU(negative_slope=0.2, inplace=True)
))
def forward(self, inputs):
inputs = inputs / len(self.rate)
tmp = []
for i in range(len(self.rate)):
tmp.append(self.__getattr__('conv{}'.format(str(i).zfill(2)))(inputs))
output = torch.cat(tmp, dim=1)
return output
class GatedConv2dWithActivation(torch.nn.Module):
"""
Gated Convlution layer with activation (default activation:LeakyReLU)
Params: same as conv2d
Input: The feature from last layer "I"
Output:\phi(f(I))*\sigmoid(g(I))
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,
batch_norm=False, activation=torch.nn.LeakyReLU(0.2, inplace=True)):
super(GatedConv2dWithActivation, self).__init__()
self.batch_norm = batch_norm
self.activation = activation
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias)
self.mask_conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups,
bias)
self.batch_norm2d = torch.nn.BatchNorm2d(out_channels)
self.sigmoid = torch.nn.Sigmoid()
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
def gated(self, mask):
return self.sigmoid(mask)
def forward(self, inputs):
x = self.conv2d(inputs)
mask = self.mask_conv2d(inputs)
if self.activation is not None:
x = self.activation(x) * self.gated(mask)
else:
x = x * self.gated(mask)
if self.batch_norm:
return self.batch_norm2d(x)
else:
return x
class GatedDeConv2dWithActivation(torch.nn.Module):
"""
Gated DeConvlution layer with activation (default activation:LeakyReLU)
resize + conv
Params: same as conv2d
Input: The feature from last layer "I"
Output:\phi(f(I))*\sigmoid(g(I))
"""
def __init__(self, scale_factor, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,
bias=True, batch_norm=False, activation=torch.nn.LeakyReLU(0.2, inplace=True)):
super(GatedDeConv2dWithActivation, self).__init__()
self.conv2d = GatedConv2dWithActivation(in_channels, out_channels, kernel_size, stride, padding, dilation,
groups, bias, batch_norm, activation)
self.scale_factor = scale_factor
def forward(self, inputs):
# print(input.size())
x = F.interpolate(inputs, scale_factor=self.scale_factor)
return self.conv2d(x)
class SNGatedConv2dWithActivation(torch.nn.Module):
"""
Gated Convolution with spetral normalization
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,
batch_norm=False, activation=torch.nn.LeakyReLU(0.2, inplace=True)):
super(SNGatedConv2dWithActivation, self).__init__()
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias)
self.mask_conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups,
bias)
self.activation = activation
self.batch_norm = batch_norm
self.batch_norm2d = torch.nn.BatchNorm2d(out_channels)
self.sigmoid = torch.nn.Sigmoid()
self.conv2d = torch.nn.utils.spectral_norm(self.conv2d)
self.mask_conv2d = torch.nn.utils.spectral_norm(self.mask_conv2d)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
def gated(self, mask):
return self.sigmoid(mask)
def forward(self, inputs):
x = self.conv2d(inputs)
mask = self.mask_conv2d(inputs)
if self.activation is not None:
x = self.activation(x) * self.gated(mask)
else:
x = x * self.gated(mask)
if self.batch_norm:
return self.batch_norm2d(x)
else:
return x
class SNGatedDeConv2dWithActivation(torch.nn.Module):
"""
Gated DeConvlution layer with activation (default activation:LeakyReLU)
resize + conv
Params: same as conv2d
Input: The feature from last layer "I"
Output:\phi(f(I))*\sigmoid(g(I))
"""
def __init__(self, scale_factor, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,
bias=True, batch_norm=False, activation=torch.nn.LeakyReLU(0.2, inplace=True)):
super(SNGatedDeConv2dWithActivation, self).__init__()
self.conv2d = SNGatedConv2dWithActivation(in_channels, out_channels, kernel_size, stride, padding, dilation,
groups, bias, batch_norm, activation)
self.scale_factor = scale_factor
def forward(self, inputs):
x = F.interpolate(inputs, scale_factor=2)
return self.conv2d(x)
class GatedConv3d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,
activation=nn.LeakyReLU(0.2, inplace=True)):
super(GatedConv3d, self).__init__()
self.input_conv = nn.Conv3d(in_channels, out_channels, kernel_size,
stride, padding, dilation, groups, bias)
self.gating_conv = nn.Conv3d(in_channels, out_channels, kernel_size,
stride, padding, dilation, groups, bias)
self.activation = activation
def forward(self, inputs):
feature = self.input_conv(inputs)
if self.activation:
feature = self.activation(feature)
gating = torch.sigmoid(self.gating_conv(inputs))
return feature * gating
class GatedDeconv3d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, scale_factor, dilation=1, groups=1,
bias=True, activation=nn.LeakyReLU(0.2, inplace=True)):
super().__init__()
self.scale_factor = scale_factor
self.deconv = GatedConv3d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias,
activation)
def forward(self, inputs):
inputs = F.interpolate(inputs, scale_factor=(1, self.scale_factor, self.scale_factor))
return self.deconv(inputs)
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
|