Spaces:
Sleeping
Sleeping
Commit
·
58611a7
1
Parent(s):
9249c82
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# إعداد النموذج والمُرمز
|
7 |
+
@st.cache_resource
|
8 |
+
def load_model():
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-base")
|
10 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/codet5-base")
|
11 |
+
return tokenizer, model
|
12 |
+
|
13 |
+
tokenizer, model = load_model()
|
14 |
+
|
15 |
+
# واجهة المستخدم الرئيسية
|
16 |
+
st.title("AI Code Assistant")
|
17 |
+
st.sidebar.title("Options")
|
18 |
+
|
19 |
+
# الأقسام الرئيسية
|
20 |
+
section = st.sidebar.radio(
|
21 |
+
"Choose a Section",
|
22 |
+
("Generate Code", "Train Model", "Prompt Engineer", "Optimize Model")
|
23 |
+
)
|
24 |
+
|
25 |
+
# 1. توليد الكود بناءً على وصف النص
|
26 |
+
if section == "Generate Code":
|
27 |
+
st.header("Generate Code from Description")
|
28 |
+
prompt = st.text_area("Enter your description:", "Write a Python function to reverse a string.")
|
29 |
+
|
30 |
+
if st.button("Generate Code"):
|
31 |
+
with st.spinner("Generating code..."):
|
32 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
33 |
+
outputs = model.generate(inputs["input_ids"], max_length=100)
|
34 |
+
code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
+
st.code(code, language="python")
|
36 |
+
|
37 |
+
# 2. تدريب النموذج
|
38 |
+
elif section == "Train Model":
|
39 |
+
st.header("Train the Model")
|
40 |
+
st.write("Upload your dataset to fine-tune the model.")
|
41 |
+
|
42 |
+
uploaded_file = st.file_uploader("Upload Dataset (JSON/CSV):")
|
43 |
+
if uploaded_file is not None:
|
44 |
+
st.write("Dataset uploaded successfully!")
|
45 |
+
# يمكنك إضافة الكود لتحليل البيانات أو عرض عينات منها هنا.
|
46 |
+
|
47 |
+
if st.button("Start Training"):
|
48 |
+
with st.spinner("Training the model..."):
|
49 |
+
time.sleep(5) # محاكاة وقت التدريب
|
50 |
+
st.success("Model training completed!")
|
51 |
+
|
52 |
+
# 3. تحسين الـ Prompts
|
53 |
+
elif section == "Prompt Engineer":
|
54 |
+
st.header("Prompt Engineering")
|
55 |
+
st.write("Experiment with different prompts to get the best results.")
|
56 |
+
|
57 |
+
prompt_input = st.text_area("Enter a prompt:", "Explain this code: def add(a, b): return a + b")
|
58 |
+
if st.button("Test Prompt"):
|
59 |
+
with st.spinner("Testing the prompt..."):
|
60 |
+
inputs = tokenizer(prompt_input, return_tensors="pt")
|
61 |
+
outputs = model.generate(inputs["input_ids"], max_length=100)
|
62 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
63 |
+
st.write("Model Response:")
|
64 |
+
st.code(response)
|
65 |
+
|
66 |
+
# 4. تحسين أداء النموذج
|
67 |
+
elif section == "Optimize Model":
|
68 |
+
st.header("Optimize Model Performance")
|
69 |
+
st.write("Adjust model parameters to improve performance.")
|
70 |
+
|
71 |
+
learning_rate = st.slider("Learning Rate:", 1e-5, 1e-3, 1e-4, step=1e-5)
|
72 |
+
batch_size = st.slider("Batch Size:", 1, 64, 8, step=1)
|
73 |
+
epochs = st.slider("Number of Epochs:", 1, 10, 3)
|
74 |
+
|
75 |
+
if st.button("Apply Settings"):
|
76 |
+
st.write(f"Settings Applied:\n- Learning Rate: {learning_rate}\n- Batch Size: {batch_size}\n- Epochs: {epochs}")
|
77 |
+
st.success("Optimization settings saved!")
|
78 |
+
|
79 |
+
---
|
80 |
+
|
81 |
+
### **الخطوة الثالثة: تشغيل التطبيق**
|
82 |
+
|
83 |
+
- قم بتشغيل التطبيق باستخدام الأمر:
|
84 |
+
```bash
|
85 |
+
streamlit run app.py
|