Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,823 Bytes
e352103 8640a7d 36be50d e352103 cf8e08c 18c7142 a1d286e e352103 7d72183 e352103 de4762a a1d286e 7d72183 a1d286e 7d72183 a1d286e 18c7142 e352103 a1d286e de4762a 36be50d 6d64276 36be50d a1d286e 36be50d a1d286e 36be50d c728a92 7d72183 334a9a6 1f3cc30 3851363 36be50d a1d286e 36be50d 18c7142 de4762a 18c7142 36be50d a1d286e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
from threading import Thread
import re
import time
import torch
import spaces
import subprocess
from io import BytesIO
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct")
model = AutoModelForImageTextToText.from_pretrained(
"HuggingFaceTB/SmolVLM2-256M-Video-Instruct",
_attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16
).to("cuda:0")
@spaces.GPU
def model_inference(
input_dict, history, max_tokens
):
text = input_dict["text"].strip()
user_content = []
media_queue = []
for file_path in input_dict.get("files", []):
if file_path.lower().endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
media_queue.append({"type": "image", "path": file_path})
elif file_path.lower().endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
media_queue.append({"type": "video", "path": file_path})
if not text and not media_queue:
gr.Warning("Please input a query and optionally image(s)/video(s).")
return
if not text and media_queue:
gr.Warning("Please input a text query along with the image(s)/video(s).")
return
if "<image>" in text or "<video>" in text:
parts = re.split(r'(<image>|<video>)', text)
temp_media_queue = list(media_queue)
for part in parts:
if part == "<image>" and temp_media_queue:
media_item = temp_media_queue.pop(0)
if media_item["type"] == "image":
user_content.append(media_item)
else:
gr.Warning(f"Placeholder <image> found, but next media is a video: {media_item['path']}. Skipping placeholder.")
user_content.append({"type": "text", "text": part})
temp_media_queue.insert(0, media_item)
elif part == "<video>" and temp_media_queue:
media_item = temp_media_queue.pop(0)
if media_item["type"] == "video":
user_content.append(media_item)
else:
gr.Warning(f"Placeholder <video> found, but next media is an image: {media_item['path']}. Skipping placeholder.")
user_content.append({"type": "text", "text": part})
temp_media_queue.insert(0, media_item)
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
elif part in ["<image>", "<video>"] and not temp_media_queue:
gr.Warning(f"Placeholder {part} found, but no more media items available.")
user_content.append({"type": "text", "text": part})
user_content.extend(temp_media_queue)
else:
if text:
user_content.append({"type": "text", "text": text})
user_content.extend(media_queue)
resulting_messages = [{"role": "user", "content": user_content}]
print("resulting_messages", resulting_messages)
try:
inputs = processor.apply_chat_template(
resulting_messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
except Exception as e:
gr.Error(f"Error during input processing: {e}")
print(f"Processor Error: {e}")
print("Problematic message structure:", resulting_messages)
return
inputs = inputs.to(model.device)
if "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
thread.join()
examples=[
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
[{"text": "What art era this artpiece <image> and this artpiece <image> belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}],
[{"text": "Describe this image.", "files": ["example_images/mosque.jpg"]}],
[{"text": "When was this purchase made and how much did it cost?", "files": ["example_images/fiche.jpg"]}],
[{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}],
[{"text": "What is happening in the video?", "files": ["example_images/short.mp4"]}],
]
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM2: The Smollest Video Model Ever 📺",
description="Play with [SmolVLM2-256M-Video-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-256M-Video-Instruct) in this demo. To get started, upload an image/video and text or try one of the examples. This demo doesn't use history for the chat, so every chat you start is a new conversation.",
examples=examples,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", ".mp4"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True,
cache_examples=False,
additional_inputs=[gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens")],
type="messages"
)
demo.launch(debug=True) |