Spaces:
Sleeping
Sleeping
File size: 9,418 Bytes
5741968 c0284c2 1e17339 e09e1bb 03de8b6 1e17339 5741968 1e17339 03de8b6 c0284c2 e09e1bb b37f1c5 e09e1bb b37f1c5 e09e1bb b37f1c5 e09e1bb b37f1c5 03de8b6 b37f1c5 e09e1bb b37f1c5 a929439 03bbc94 a929439 03bbc94 e09e1bb 03bbc94 970a4b6 03bbc94 e09e1bb 03bbc94 970a4b6 03bbc94 e09e1bb 03bbc94 5741968 03bbc94 b37f1c5 03bbc94 1e17339 03bbc94 1e17339 03bbc94 e09e1bb 03bbc94 1e17339 03bbc94 b37f1c5 03bbc94 1e17339 03bbc94 1e17339 03bbc94 1e17339 03bbc94 08d5a0c 03bbc94 5741968 1e17339 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import gradio as gr
import torch
from transformers import AutoTokenizer, pipeline
from huggingface_hub import InferenceClient
import logging
import spaces
# ロガーの設定
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# モデル定義(ローカルモデルとAPIモデルの両方)
TEXT_GENERATION_MODELS = [
{
"name": "Llama-2",
"description": "Known for its robust performance in content analysis",
"type": "local",
"model_path": "meta-llama/Llama-2-7b-hf"
},
{
"name": "Mistral-7B",
"description": "Offers precise and detailed text evaluation",
"type": "local",
"model_path": "mistralai/Mistral-7B-v0.1"
},
{
"name": "Zephyr-7B",
"description": "Specialized in understanding context and nuance",
"type": "api",
"model_id": "HuggingFaceH4/zephyr-7b-beta"
}
]
CLASSIFICATION_MODELS = [
{
"name": "Toxic-BERT",
"description": "Fine-tuned for toxic content detection",
"type": "local",
"model_path": "unitary/toxic-bert"
}
]
# グローバル変数でモデルとAPIクライアントを管理
tokenizers = {}
pipelines = {}
api_clients = {}
def initialize_api_clients():
"""Inference APIクライアントの初期化"""
for model in TEXT_GENERATION_MODELS + CLASSIFICATION_MODELS:
if model["type"] == "api" and "model_id" in model:
logger.info(f"Initializing API client for {model['name']}")
api_clients[model["model_id"]] = InferenceClient(
model["model_id"],
token=True # HFトークンを使用
)
def preload_local_models():
"""ローカルモデルを事前ロード"""
logger.info("Preloading local models at application startup...")
# テキスト生成モデル
for model in TEXT_GENERATION_MODELS:
if model["type"] == "local" and "model_path" in model:
model_path = model["model_path"]
try:
logger.info(f"Preloading text generation model: {model_path}")
tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path)
pipelines[model_path] = pipeline(
"text-generation",
model=model_path,
tokenizer=tokenizers[model_path],
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
logger.info(f"Model preloaded successfully: {model_path}")
except Exception as e:
logger.error(f"Error preloading model {model_path}: {str(e)}")
# 分類モデル
for model in CLASSIFICATION_MODELS:
if model["type"] == "local" and "model_path" in model:
model_path = model["model_path"]
try:
logger.info(f"Preloading classification model: {model_path}")
tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path)
pipelines[model_path] = pipeline(
"text-classification",
model=model_path,
tokenizer=tokenizers[model_path],
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
logger.info(f"Model preloaded successfully: {model_path}")
except Exception as e:
logger.error(f"Error preloading model {model_path}: {str(e)}")
@spaces.GPU
def generate_text_local(model_path, text):
"""ローカルモデルでのテキスト生成"""
try:
logger.info(f"Running local text generation with {model_path}")
outputs = pipelines[model_path](
text,
max_new_tokens=100,
do_sample=False,
num_return_sequences=1
)
return outputs[0]["generated_text"]
except Exception as e:
logger.error(f"Error in local text generation with {model_path}: {str(e)}")
return f"Error: {str(e)}"
def generate_text_api(model_id, text):
"""API経由でのテキスト生成"""
try:
logger.info(f"Running API text generation with {model_id}")
response = api_clients[model_id].text_generation(
text,
max_new_tokens=100,
temperature=0.7
)
return response
except Exception as e:
logger.error(f"Error in API text generation with {model_id}: {str(e)}")
return f"Error: {str(e)}"
@spaces.GPU
def classify_text_local(model_path, text):
"""ローカルモデルでのテキスト分類"""
try:
logger.info(f"Running local classification with {model_path}")
result = pipelines[model_path](text)
return str(result)
except Exception as e:
logger.error(f"Error in local classification with {model_path}: {str(e)}")
return f"Error: {str(e)}"
def classify_text_api(model_id, text):
"""API経由でのテキスト分類"""
try:
logger.info(f"Running API classification with {model_id}")
response = api_clients[model_id].text_classification(text)
return str(response)
except Exception as e:
logger.error(f"Error in API classification with {model_id}: {str(e)}")
return f"Error: {str(e)}"
def handle_invoke(text, selected_types):
"""選択されたタイプのモデルで分析を実行"""
results = []
# テキスト生成モデルの実行
for model in TEXT_GENERATION_MODELS:
if model["type"] in selected_types:
if model["type"] == "local":
result = generate_text_local(model["model_path"], text)
else: # api
result = generate_text_api(model["model_id"], text)
results.append(f"{model['name']}: {result}")
# 分類モデルの実行
for model in CLASSIFICATION_MODELS:
if model["type"] in selected_types:
if model["type"] == "local":
result = classify_text_local(model["model_path"], text)
else: # api
result = classify_text_api(model["model_id"], text)
results.append(f"{model['name']}: {result}")
# 結果リストの長さを調整
while len(results) < len(TEXT_GENERATION_MODELS) + len(CLASSIFICATION_MODELS):
results.append("")
return results
def create_ui():
"""UIの作成"""
with gr.Blocks() as demo:
# ヘッダー
gr.Markdown("""
# Toxic Eye (Local + API Version)
This system evaluates the toxicity level of input text using both local models and Inference API.
""")
# 入力セクション
with gr.Row():
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter text to analyze...",
lines=3
)
# フィルターセクション
with gr.Row():
filter_checkboxes = gr.CheckboxGroup(
choices=["local", "api"],
value=["local", "api"],
label="Filter Models",
info="Choose which types of models to use",
interactive=True
)
# 実行ボタン
with gr.Row():
invoke_button = gr.Button(
"Analyze Text",
variant="primary",
size="lg"
)
# モデル出力表示エリア
all_outputs = []
with gr.Tabs():
# テキスト生成モデルのタブ
with gr.Tab("Text Generation Models"):
for model in TEXT_GENERATION_MODELS:
with gr.Group():
gr.Markdown(f"### {model['name']} ({model['type']})")
output = gr.Textbox(
label=f"{model['name']} Output",
lines=5,
interactive=False,
info=model["description"]
)
all_outputs.append(output)
# 分類モデルのタブ
with gr.Tab("Classification Models"):
for model in CLASSIFICATION_MODELS:
with gr.Group():
gr.Markdown(f"### {model['name']} ({model['type']})")
output = gr.Textbox(
label=f"{model['name']} Output",
lines=5,
interactive=False,
info=model["description"]
)
all_outputs.append(output)
# イベント接続
invoke_button.click(
fn=handle_invoke,
inputs=[input_text, filter_checkboxes],
outputs=all_outputs
)
return demo
def main():
# APIクライアントの初期化
initialize_api_clients()
# ローカルモデルを事前ロード
preload_local_models()
# UIを作成して起動
demo = create_ui()
demo.launch()
if __name__ == "__main__":
main() |