Spaces:
Sleeping
Sleeping
File size: 6,430 Bytes
5741968 c0284c2 1e17339 03de8b6 1e17339 5741968 1e17339 03de8b6 c0284c2 b37f1c5 03de8b6 b37f1c5 a929439 b37f1c5 a929439 b37f1c5 970a4b6 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 970a4b6 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 5741968 b37f1c5 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 b37f1c5 1e17339 970a4b6 1e17339 b37f1c5 1e17339 5741968 1e17339 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
import torch
from transformers import AutoTokenizer, pipeline
import logging
import spaces
# ロガーの設定
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# シンプルなモデル定義(3つのローカルモデル)
TEXT_GENERATION_MODELS = [
{
"name": "Llama-2",
"description": "Known for its robust performance in content analysis",
"model_path": "meta-llama/Llama-2-7b-hf"
},
{
"name": "Mistral-7B",
"description": "Offers precise and detailed text evaluation",
"model_path": "mistralai/Mistral-7B-v0.1"
}
]
CLASSIFICATION_MODELS = [
{
"name": "Toxic-BERT",
"description": "Fine-tuned for toxic content detection",
"model_path": "unitary/toxic-bert"
}
]
# グローバル変数でモデルとトークナイザを管理
tokenizers = {}
pipelines = {}
def preload_models():
"""アプリケーション起動時にモデルを事前ロード"""
logger.info("Preloading models at application startup...")
# テキスト生成モデル
for model in TEXT_GENERATION_MODELS:
model_path = model["model_path"]
try:
logger.info(f"Preloading text generation model: {model_path}")
tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path)
pipelines[model_path] = pipeline(
"text-generation",
model=model_path,
tokenizer=tokenizers[model_path],
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
logger.info(f"Model preloaded successfully: {model_path}")
except Exception as e:
logger.error(f"Error preloading model {model_path}: {str(e)}")
# 分類モデル
for model in CLASSIFICATION_MODELS:
model_path = model["model_path"]
try:
logger.info(f"Preloading classification model: {model_path}")
tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path)
pipelines[model_path] = pipeline(
"text-classification",
model=model_path,
tokenizer=tokenizers[model_path],
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
logger.info(f"Model preloaded successfully: {model_path}")
except Exception as e:
logger.error(f"Error preloading model {model_path}: {str(e)}")
@spaces.GPU
def generate_text(model_path, text):
"""テキスト生成の実行"""
try:
logger.info(f"Running text generation with {model_path}")
outputs = pipelines[model_path](
text,
max_new_tokens=100,
do_sample=False,
num_return_sequences=1
)
return outputs[0]["generated_text"]
except Exception as e:
logger.error(f"Error in text generation with {model_path}: {str(e)}")
return f"Error: {str(e)}"
@spaces.GPU
def classify_text(model_path, text):
"""テキスト分類の実行"""
try:
logger.info(f"Running classification with {model_path}")
result = pipelines[model_path](text)
return str(result)
except Exception as e:
logger.error(f"Error in classification with {model_path}: {str(e)}")
return f"Error: {str(e)}"
def handle_invoke(text):
"""すべてのモデルで分析を実行"""
results = []
# テキスト生成モデルの実行
for model in TEXT_GENERATION_MODELS:
model_path = model["model_path"]
result = generate_text(model_path, text)
results.append(result)
# 分類モデルの実行
for model in CLASSIFICATION_MODELS:
model_path = model["model_path"]
result = classify_text(model_path, text)
results.append(result)
return results
def create_ui():
"""UIの作成"""
with gr.Blocks() as demo:
# ヘッダー
gr.Markdown("""
# Toxic Eye (3 Models Version)
This system evaluates the toxicity level of input text using 3 local models.
""")
# 入力セクション
with gr.Row():
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter text to analyze...",
lines=3
)
# 実行ボタン
with gr.Row():
invoke_button = gr.Button(
"Analyze Text",
variant="primary",
size="lg"
)
# モデル出力表示エリア
gen_outputs = []
class_outputs = []
with gr.Tabs():
# テキスト生成モデルのタブ
with gr.Tab("Text Generation Models"):
for model in TEXT_GENERATION_MODELS:
with gr.Group():
gr.Markdown(f"### {model['name']}")
output = gr.Textbox(
label=f"{model['name']} Output",
lines=5,
interactive=False,
info=model["description"]
)
gen_outputs.append(output)
# 分類モデルのタブ
with gr.Tab("Classification Models"):
for model in CLASSIFICATION_MODELS:
with gr.Group():
gr.Markdown(f"### {model['name']}")
output = gr.Textbox(
label=f"{model['name']} Output",
lines=5,
interactive=False,
info=model["description"]
)
class_outputs.append(output)
# イベント接続
invoke_button.click(
fn=handle_invoke,
inputs=[input_text],
outputs=gen_outputs + class_outputs
)
return demo
def main():
# モデルを事前ロード
preload_models()
# UIを作成して起動
demo = create_ui()
demo.launch()
if __name__ == "__main__":
main() |