File size: 6,430 Bytes
5741968
c0284c2
1e17339
03de8b6
1e17339
5741968
1e17339
 
 
 
 
03de8b6
c0284c2
b37f1c5
 
 
 
 
 
 
 
 
 
 
 
 
03de8b6
b37f1c5
 
 
 
 
 
 
a929439
b37f1c5
 
 
a929439
b37f1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
970a4b6
1e17339
b37f1c5
 
1e17339
b37f1c5
 
1e17339
 
 
 
 
 
 
b37f1c5
1e17339
970a4b6
1e17339
b37f1c5
 
1e17339
b37f1c5
 
1e17339
 
b37f1c5
1e17339
5741968
b37f1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e17339
b37f1c5
1e17339
b37f1c5
1e17339
b37f1c5
 
1e17339
 
b37f1c5
1e17339
 
 
 
 
 
 
b37f1c5
1e17339
 
 
 
 
 
 
b37f1c5
 
 
 
1e17339
b37f1c5
 
 
 
 
 
 
 
 
 
 
 
1e17339
b37f1c5
 
 
 
 
 
 
 
 
 
 
 
1e17339
b37f1c5
1e17339
 
 
b37f1c5
1e17339
 
 
970a4b6
1e17339
b37f1c5
 
 
 
1e17339
 
5741968
1e17339
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
import torch
from transformers import AutoTokenizer, pipeline
import logging
import spaces

# ロガーの設定
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# シンプルなモデル定義(3つのローカルモデル)
TEXT_GENERATION_MODELS = [
    {
        "name": "Llama-2",
        "description": "Known for its robust performance in content analysis",
        "model_path": "meta-llama/Llama-2-7b-hf"
    },
    {
        "name": "Mistral-7B",
        "description": "Offers precise and detailed text evaluation",
        "model_path": "mistralai/Mistral-7B-v0.1"
    }
]

CLASSIFICATION_MODELS = [
    {
        "name": "Toxic-BERT",
        "description": "Fine-tuned for toxic content detection",
        "model_path": "unitary/toxic-bert"
    }
]

# グローバル変数でモデルとトークナイザを管理
tokenizers = {}
pipelines = {}

def preload_models():
    """アプリケーション起動時にモデルを事前ロード"""
    logger.info("Preloading models at application startup...")
    
    # テキスト生成モデル
    for model in TEXT_GENERATION_MODELS:
        model_path = model["model_path"]
        try:
            logger.info(f"Preloading text generation model: {model_path}")
            tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path)
            pipelines[model_path] = pipeline(
                "text-generation",
                model=model_path,
                tokenizer=tokenizers[model_path],
                torch_dtype=torch.bfloat16,
                trust_remote_code=True,
                device_map="auto"
            )
            logger.info(f"Model preloaded successfully: {model_path}")
        except Exception as e:
            logger.error(f"Error preloading model {model_path}: {str(e)}")
    
    # 分類モデル
    for model in CLASSIFICATION_MODELS:
        model_path = model["model_path"]
        try:
            logger.info(f"Preloading classification model: {model_path}")
            tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path)
            pipelines[model_path] = pipeline(
                "text-classification",
                model=model_path,
                tokenizer=tokenizers[model_path],
                torch_dtype=torch.bfloat16,
                trust_remote_code=True,
                device_map="auto"
            )
            logger.info(f"Model preloaded successfully: {model_path}")
        except Exception as e:
            logger.error(f"Error preloading model {model_path}: {str(e)}")

@spaces.GPU
def generate_text(model_path, text):
    """テキスト生成の実行"""
    try:
        logger.info(f"Running text generation with {model_path}")
        outputs = pipelines[model_path](
            text,
            max_new_tokens=100,
            do_sample=False,
            num_return_sequences=1
        )
        return outputs[0]["generated_text"]
    except Exception as e:
        logger.error(f"Error in text generation with {model_path}: {str(e)}")
        return f"Error: {str(e)}"

@spaces.GPU
def classify_text(model_path, text):
    """テキスト分類の実行"""
    try:
        logger.info(f"Running classification with {model_path}")
        result = pipelines[model_path](text)
        return str(result)
    except Exception as e:
        logger.error(f"Error in classification with {model_path}: {str(e)}")
        return f"Error: {str(e)}"

def handle_invoke(text):
    """すべてのモデルで分析を実行"""
    results = []
    
    # テキスト生成モデルの実行
    for model in TEXT_GENERATION_MODELS:
        model_path = model["model_path"]
        result = generate_text(model_path, text)
        results.append(result)
    
    # 分類モデルの実行
    for model in CLASSIFICATION_MODELS:
        model_path = model["model_path"]
        result = classify_text(model_path, text)
        results.append(result)
    
    return results

def create_ui():
    """UIの作成"""
    with gr.Blocks() as demo:
        # ヘッダー
        gr.Markdown("""
        # Toxic Eye (3 Models Version)
        This system evaluates the toxicity level of input text using 3 local models.
        """)
        
        # 入力セクション
        with gr.Row():
            input_text = gr.Textbox(
                label="Input Text",
                placeholder="Enter text to analyze...",
                lines=3
            )
        
        # 実行ボタン
        with gr.Row():
            invoke_button = gr.Button(
                "Analyze Text",
                variant="primary",
                size="lg"
            )
        
        # モデル出力表示エリア
        gen_outputs = []
        class_outputs = []
        
        with gr.Tabs():
            # テキスト生成モデルのタブ
            with gr.Tab("Text Generation Models"):
                for model in TEXT_GENERATION_MODELS:
                    with gr.Group():
                        gr.Markdown(f"### {model['name']}")
                        output = gr.Textbox(
                            label=f"{model['name']} Output",
                            lines=5,
                            interactive=False,
                            info=model["description"]
                        )
                        gen_outputs.append(output)
            
            # 分類モデルのタブ
            with gr.Tab("Classification Models"):
                for model in CLASSIFICATION_MODELS:
                    with gr.Group():
                        gr.Markdown(f"### {model['name']}")
                        output = gr.Textbox(
                            label=f"{model['name']} Output",
                            lines=5,
                            interactive=False,
                            info=model["description"]
                        )
                        class_outputs.append(output)
        
        # イベント接続
        invoke_button.click(
            fn=handle_invoke,
            inputs=[input_text],
            outputs=gen_outputs + class_outputs
        )
    
    return demo

def main():
    # モデルを事前ロード
    preload_models()
    
    # UIを作成して起動
    demo = create_ui()
    demo.launch()

if __name__ == "__main__":
    main()