Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import pipeline | |
import torch | |
import logging | |
# Configure logging/logger | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
) | |
logger = logging.getLogger(__name__) | |
# Predefined list of models to compare (can be expanded) | |
model_options = { | |
"Foundation-Sec-8B": pipeline("text-generation", model="fdtn-ai/Foundation-Sec-8B"), | |
} | |
# Define the response function | |
def generate_text_local(model_pipeline, prompt): | |
"""Local text generation""" | |
try: | |
logger.info(f"Running local text generation with {model_pipeline.path}") | |
# Move model to GPU (entire pipeline) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_pipeline.model = model_pipeline.model.to(device) | |
# Set other pipeline components to use GPU | |
if hasattr(model_pipeline, "device"): | |
model_pipeline.device = device | |
# Record device information | |
device_info = next(model_pipeline.model.parameters()).device | |
logger.info(f"Model {model_pipeline.path} is running on device: {device_info}") | |
outputs = model_pipeline( | |
prompt, | |
max_new_tokens=3, # = model.generate(max_new_tokens=3, …) | |
do_sample=True, | |
temperature=0.1, | |
top_p=0.9, | |
clean_up_tokenization_spaces=True, # echo 部分を整形 | |
) | |
# Move model back to CPU | |
model_pipeline.model = model_pipeline.model.to("cpu") | |
if hasattr(model_pipeline, "device"): | |
model_pipeline.device = torch.device("cpu") | |
return outputs[0]["generated_text"].replace(prompt, "").strip() | |
except Exception as e: | |
logger.error(f"Error in local text generation with {model_pipeline.path}: {str(e)}") | |
return f"Error: {str(e)}" | |
# Build Gradio app | |
def create_demo(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# AI Model Comparison Tool 🌟") | |
gr.Markdown( | |
""" | |
Compare responses from two AI models side-by-side. | |
Select two models, ask a question, and compare their responses in real time! | |
""" | |
) | |
# Input Section | |
with gr.Row(): | |
system_message = gr.Textbox( | |
value="You are a helpful assistant providing answers for technical and customer support queries.", | |
label="System message" | |
) | |
user_message = gr.Textbox(label="Your question", placeholder="Type your question here...") | |
with gr.Row(): | |
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
) | |
# Model Selection Section | |
selected_models = gr.CheckboxGroup( | |
choices=list(model_options.keys()), | |
label="Select exactly two model to compare", | |
value=["Foundation-Sec-8B"], # Default models | |
) | |
# Dynamic Response Section | |
response_box1 = gr.Textbox(label="Response from Model 1", interactive=False) | |
#response_box2 = gr.Textbox(label="Response from Model 2", interactive=False) | |
# Function to generate responses | |
def generate_responses( | |
message, system_message, max_tokens, temperature, top_p, selected_models | |
): | |
#if len(selected_models) != 2: | |
# return "Error: Please select exactly two models to compare.", "" | |
responses = generate_text_local( | |
#message, [], system_message, max_tokens, temperature, top_p, selected_models | |
model_options[selected_models[0]], | |
message | |
) | |
#return responses.get(selected_models[0], ""), responses.get(selected_models[1], "") | |
return responses | |
# Add a button for generating responses | |
submit_button = gr.Button("Generate Responses") | |
submit_button.click( | |
generate_responses, | |
inputs=[user_message, system_message, max_tokens, temperature, top_p, selected_models], | |
#outputs=[response_box1, response_box2], # Link to response boxes | |
outputs=[response_box1] | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_demo() | |
demo.launch() |