nyasukun's picture
.
18eee30
raw
history blame
5.03 kB
import gradio as gr
import spaces
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
import logging
# Configure logging/logger
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Stores for models and tokenizers
tokenizers = {}
pipelines = {}
# Predefined list of models to compare (can be expanded)
model_options = {
"Foundation-Sec-8B": "fdtn-ai/Foundation-Sec-8B",
}
# Initialize models at startup
for model_name, model_path in model_options.items():
try:
logger.info(f"Initializing text generation model: {model_path}")
tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path)
pipelines[model_path] = pipeline(
"text-generation",
model=model_path,
tokenizer=tokenizers[model_path],
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
logger.info(f"Model initialized successfully: {model_path}")
except Exception as e:
logger.error(f"Error initializing model {model_path}: {str(e)}")
@spaces.GPU
def generate_text_local(model_path, prompt, max_new_tokens=512, temperature=0.7, top_p=0.95):
"""Local text generation"""
try:
# Use the already initialized model
if model_path in pipelines:
model_pipeline = pipelines[model_path]
logger.info(f"Running text generation with {model_path}")
outputs = model_pipeline(
prompt,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
clean_up_tokenization_spaces=True,
)
return outputs[0]["generated_text"].replace(prompt, "").strip()
else:
return f"Error: Model {model_path} not initialized"
except Exception as e:
logger.error(f"Error in text generation with {model_path}: {str(e)}")
return f"Error: {str(e)}"
# Build Gradio app
def create_demo():
with gr.Blocks() as demo:
gr.Markdown("# AI Model Comparison Tool 🌟")
gr.Markdown(
"""
Compare responses from two AI models side-by-side.
Select two models, ask a question, and compare their responses in real time!
"""
)
# Input Section
with gr.Row():
system_message = gr.Textbox(
value="You are a helpful assistant providing answers for technical and customer support queries.",
label="System message"
)
user_message = gr.Textbox(label="Your question", placeholder="Type your question here...")
with gr.Row():
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
)
# Model Selection Section
selected_models = gr.CheckboxGroup(
choices=list(model_options.keys()),
label="Select exactly two model to compare",
value=["Foundation-Sec-8B"], # Default models
)
# Dynamic Response Section
response_box1 = gr.Textbox(label="Response from Model 1", interactive=False)
#response_box2 = gr.Textbox(label="Response from Model 2", interactive=False)
# Function to generate responses
def generate_responses(
message, system_message, max_tokens, temperature, top_p, selected_models
):
#if len(selected_models) != 2:
# return "Error: Please select exactly two models to compare.", ""
if len(selected_models) == 0:
return "Error: Please select at least one model"
model_path = model_options[selected_models[0]]
full_prompt = f"{system_message}\n\nUser: {message}\nAssistant:"
response = generate_text_local(
model_path,
full_prompt,
max_tokens,
temperature,
top_p
)
#return responses.get(selected_models[0], ""), responses.get(selected_models[1], "")
return response
# Add a button for generating responses
submit_button = gr.Button("Generate Responses")
submit_button.click(
generate_responses,
inputs=[user_message, system_message, max_tokens, temperature, top_p, selected_models],
#outputs=[response_box1, response_box2], # Link to response boxes
outputs=[response_box1]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch()