Spaces:
Runtime error
Runtime error
Added App files
Browse files- app.py +195 -0
- assets/images/airplane.jpg +0 -0
- assets/images/bird.jpeg +0 -0
- assets/images/car.jpg +0 -0
- assets/images/cat.jpeg +0 -0
- assets/images/deer.jpg +0 -0
- assets/images/dog.jpg +0 -0
- assets/images/frog.jpeg +0 -0
- assets/images/horse.jpg +0 -0
- assets/images/ship.jpg +0 -0
- assets/images/truck.jpg +0 -0
- assets/model/CustomResNet.pt +3 -0
- assets/model/Misclassified_Data.pt +3 -0
- gitattributes +35 -0
- modules/__pycache__/config.cpython-311.pyc +0 -0
- modules/__pycache__/custom_resnet.cpython-311.pyc +0 -0
- modules/__pycache__/visualize.cpython-311.pyc +0 -0
- modules/config.py +38 -0
- modules/custom_resnet.py +456 -0
- modules/visualize.py +170 -0
- requirements.txt +11 -0
app.py
CHANGED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Outline
|
2 |
+
# Import packages
|
3 |
+
# Import modules
|
4 |
+
# Constants
|
5 |
+
# Load model
|
6 |
+
# Function to process user uploaded image/ examples
|
7 |
+
# Inference function
|
8 |
+
# Gradio examples
|
9 |
+
# Gradio App
|
10 |
+
|
11 |
+
# Import packages required for the app
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
# Import custom modules
|
15 |
+
import modules.config as config
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
|
19 |
+
# import torchvision
|
20 |
+
from modules.custom_resnet import CustomResNet
|
21 |
+
from modules.visualize import plot_gradcam_images, plot_misclassified_images
|
22 |
+
from pytorch_grad_cam import GradCAM
|
23 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
24 |
+
from torchvision import transforms
|
25 |
+
|
26 |
+
# Load and initialize the model
|
27 |
+
model = CustomResNet()
|
28 |
+
|
29 |
+
# Define device
|
30 |
+
cpu = torch.device("cpu")
|
31 |
+
|
32 |
+
# Using the checkpoint path present in config, load the trained model
|
33 |
+
model.load_state_dict(torch.load(config.MODEL_PATH, map_location=cpu), strict=False)
|
34 |
+
# Send model to CPU
|
35 |
+
model.to(cpu)
|
36 |
+
# Make the model in evaluation mode
|
37 |
+
model.eval()
|
38 |
+
print(f"Model Device: {next(model.parameters()).device}")
|
39 |
+
|
40 |
+
|
41 |
+
# Load the misclassified images data
|
42 |
+
misclassified_image_data = torch.load(config.MISCLASSIFIED_PATH, map_location=cpu)
|
43 |
+
|
44 |
+
# Class Names
|
45 |
+
classes = list(config.CIFAR_CLASSES)
|
46 |
+
# Allowed model names
|
47 |
+
model_layer_names = ["prep", "layer1_x", "layer1_r1", "layer2", "layer3_x", "layer3_r2"]
|
48 |
+
|
49 |
+
|
50 |
+
def get_target_layer(layer_name):
|
51 |
+
"""Get target layer for visualization"""
|
52 |
+
if layer_name == "prep":
|
53 |
+
return [model.prep[-1]]
|
54 |
+
elif layer_name == "layer1_x":
|
55 |
+
return [model.layer1_x[-1]]
|
56 |
+
elif layer_name == "layer1_r1":
|
57 |
+
return [model.layer1_r1[-1]]
|
58 |
+
elif layer_name == "layer2":
|
59 |
+
return [model.layer2[-1]]
|
60 |
+
elif layer_name == "layer3_x":
|
61 |
+
return [model.layer3_x[-1]]
|
62 |
+
elif layer_name == "layer3_r2":
|
63 |
+
return [model.layer3_r2[-1]]
|
64 |
+
else:
|
65 |
+
return None
|
66 |
+
|
67 |
+
|
68 |
+
def generate_prediction(input_image, num_classes=3, show_gradcam=True, transparency=0.6, layer_name="layer3_x"):
|
69 |
+
""" "Given an input image, generate the prediction, confidence and visualization"""
|
70 |
+
mean = list(config.CIFAR_MEAN)
|
71 |
+
std = list(config.CIFAR_STD)
|
72 |
+
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
|
73 |
+
|
74 |
+
with torch.no_grad():
|
75 |
+
orginal_img = input_image
|
76 |
+
input_image = transform(input_image).unsqueeze(0).to(cpu)
|
77 |
+
print(f"Input Device: {input_image.device}")
|
78 |
+
outputs = model(input_image).to(cpu)
|
79 |
+
print(f"Output Device: {outputs.device}")
|
80 |
+
o = torch.exp(outputs).to(cpu)
|
81 |
+
print(f"Output Exp Device: {o.device}")
|
82 |
+
|
83 |
+
o_np = np.squeeze(np.asarray(o.numpy()))
|
84 |
+
# get indexes of probabilties in descending order
|
85 |
+
sorted_indexes = np.argsort(o_np)[::-1]
|
86 |
+
# sort the probabilities in descending order
|
87 |
+
final_class = classes[o_np.argmax()]
|
88 |
+
|
89 |
+
confidences = {}
|
90 |
+
for cnt in range(int(num_classes)):
|
91 |
+
# set the confidence of highest class with highest probability
|
92 |
+
confidences[classes[sorted_indexes[cnt]]] = float(o_np[sorted_indexes[cnt]])
|
93 |
+
|
94 |
+
# Show Grad Cam
|
95 |
+
if show_gradcam:
|
96 |
+
# Get the target layer
|
97 |
+
target_layers = get_target_layer(layer_name)
|
98 |
+
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
|
99 |
+
grayscale_cam = cam(input_tensor=input_image, targets=None)
|
100 |
+
grayscale_cam = grayscale_cam[0, :]
|
101 |
+
visualization = show_cam_on_image(orginal_img / 255, grayscale_cam, use_rgb=True, image_weight=transparency)
|
102 |
+
else:
|
103 |
+
visualization = orginal_img
|
104 |
+
|
105 |
+
return final_class, confidences, visualization
|
106 |
+
|
107 |
+
|
108 |
+
def app_interface(
|
109 |
+
input_image,
|
110 |
+
num_classes,
|
111 |
+
show_gradcam,
|
112 |
+
layer_name,
|
113 |
+
transparency,
|
114 |
+
show_misclassified,
|
115 |
+
num_misclassified,
|
116 |
+
show_gradcam_misclassified,
|
117 |
+
num_gradcam_misclassified,
|
118 |
+
):
|
119 |
+
"""Function which provides the Gradio interface"""
|
120 |
+
|
121 |
+
# Get the prediction for the input image along with confidence and visualization
|
122 |
+
final_class, confidences, visualization = generate_prediction(
|
123 |
+
input_image, num_classes, show_gradcam, transparency, layer_name
|
124 |
+
)
|
125 |
+
|
126 |
+
if show_misclassified:
|
127 |
+
misclassified_fig, misclassified_axs = plot_misclassified_images(
|
128 |
+
data=misclassified_image_data, class_label=classes, num_images=num_misclassified
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
misclassified_fig = None
|
132 |
+
|
133 |
+
if show_gradcam_misclassified:
|
134 |
+
gradcam_fig, gradcam_axs = plot_gradcam_images(
|
135 |
+
model=model,
|
136 |
+
data=misclassified_image_data,
|
137 |
+
class_label=classes,
|
138 |
+
# Use penultimate block of resnet18 layer 3 as the target layer for gradcam
|
139 |
+
# Decided using model summary so that dimensions > 7x7
|
140 |
+
target_layers=get_target_layer(layer_name),
|
141 |
+
targets=None,
|
142 |
+
num_images=num_gradcam_misclassified,
|
143 |
+
image_weight=transparency,
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
gradcam_fig = None
|
147 |
+
|
148 |
+
# # delete ununsed axises
|
149 |
+
# del misclassified_axs
|
150 |
+
# del gradcam_axs
|
151 |
+
|
152 |
+
return final_class, confidences, visualization, misclassified_fig, gradcam_fig
|
153 |
+
|
154 |
+
|
155 |
+
TITLE = "CIFAR10 Image classification using a Custom ResNet Model"
|
156 |
+
DESCRIPTION = "Gradio App to infer using a Custom ResNet model and get GradCAM results"
|
157 |
+
examples = [
|
158 |
+
["assets/images/airplane.jpg", 3, True, "layer3_x", 0.6, True, 5, True, 5],
|
159 |
+
["assets/images/bird.jpeg", 4, True, "layer3_x", 0.7, True, 10, True, 20],
|
160 |
+
["assets/images/car.jpg", 5, True, "layer3_x", 0.5, True, 15, True, 5],
|
161 |
+
["assets/images/cat.jpeg", 6, True, "layer3_x", 0.65, True, 20, True, 10],
|
162 |
+
["assets/images/deer.jpg", 7, False, "layer2", 0.75, True, 5, True, 5],
|
163 |
+
["assets/images/dog.jpg", 8, True, "layer2", 0.55, True, 10, True, 5],
|
164 |
+
["assets/images/frog.jpeg", 9, True, "layer2", 0.8, True, 15, True, 15],
|
165 |
+
["assets/images/horse.jpg", 10, False, "layer1_r1", 0.85, True, 20, True, 5],
|
166 |
+
["assets/images/ship.jpg", 3, True, "layer1_r1", 0.4, True, 5, True, 15],
|
167 |
+
["assets/images/truck.jpg", 4, True, "layer1_r1", 0.3, True, 5, True, 10],
|
168 |
+
]
|
169 |
+
inference_app = gr.Interface(
|
170 |
+
app_interface,
|
171 |
+
inputs=[
|
172 |
+
# This accepts the image after resizing it to 32x32 which is what our model expects
|
173 |
+
gr.Image(shape=(32, 32)),
|
174 |
+
gr.Number(value=3, maximum=10, minimum=1, step=1.0, precision=0, label="#Classes to show"),
|
175 |
+
gr.Checkbox(True, label="Show GradCAM Image"),
|
176 |
+
gr.Dropdown(model_layer_names, value="layer3_x", label="Visulalization Layer from Model"),
|
177 |
+
# How much should the image be overlayed on the original image
|
178 |
+
gr.Slider(0, 1, 0.6, label="Image Overlay Factor"),
|
179 |
+
gr.Checkbox(True, label="Show Misclassified Images?"),
|
180 |
+
gr.Slider(value=10, maximum=25, minimum=5, step=5.0, precision=0, label="#Misclassified images to show"),
|
181 |
+
gr.Checkbox(True, label="Visulize GradCAM for Misclassified images?"),
|
182 |
+
gr.Slider(value=10, maximum=25, minimum=5, step=5.0, precision=0, label="#GradCAM images to show"),
|
183 |
+
],
|
184 |
+
outputs=[
|
185 |
+
gr.Textbox(label="Top Class", container=True),
|
186 |
+
gr.Label(label="Confidences", container=True),
|
187 |
+
gr.Image(shape=(32, 32), label="Grad CAM/ Input Image", container=True).style(width=256, height=256),
|
188 |
+
gr.Plot(label="Misclassified images", container=True),
|
189 |
+
gr.Plot(label="Grad CAM of Misclassified images"),
|
190 |
+
],
|
191 |
+
title=TITLE,
|
192 |
+
description=DESCRIPTION,
|
193 |
+
examples=examples,
|
194 |
+
)
|
195 |
+
inference_app.launch()
|
assets/images/airplane.jpg
ADDED
![]() |
assets/images/bird.jpeg
ADDED
![]() |
assets/images/car.jpg
ADDED
![]() |
assets/images/cat.jpeg
ADDED
![]() |
assets/images/deer.jpg
ADDED
![]() |
assets/images/dog.jpg
ADDED
![]() |
assets/images/frog.jpeg
ADDED
![]() |
assets/images/horse.jpg
ADDED
![]() |
assets/images/ship.jpg
ADDED
![]() |
assets/images/truck.jpg
ADDED
![]() |
assets/model/CustomResNet.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5535c4904e58078bfd7ea91c78d0536a318006bf61e24fec575da0bd5656e791
|
3 |
+
size 26326547
|
assets/model/Misclassified_Data.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23e05b73fa387d4f3037d4a2c372615aac531f79361f029a9d2fae125ec575af
|
3 |
+
size 447578
|
gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
modules/__pycache__/config.cpython-311.pyc
ADDED
Binary file (966 Bytes). View file
|
|
modules/__pycache__/custom_resnet.cpython-311.pyc
ADDED
Binary file (15.2 kB). View file
|
|
modules/__pycache__/visualize.cpython-311.pyc
ADDED
Binary file (7.84 kB). View file
|
|
modules/config.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Alert: Change these when running in production
|
2 |
+
|
3 |
+
# Constants naming convention: All caps separated by underscore
|
4 |
+
# https://realpython.com/python-constants/
|
5 |
+
|
6 |
+
# Where do we store the data?
|
7 |
+
MISCLASSIFIED_PATH = "./assets/model/Misclassified_Data.pt"
|
8 |
+
MODEL_PATH = "./assets/model/CustomResNet.pt"
|
9 |
+
|
10 |
+
# Set seed value for reproducibility
|
11 |
+
SEED = 53
|
12 |
+
|
13 |
+
# What is the mean and std deviation of the dataset?
|
14 |
+
CIFAR_MEAN = (0.4915, 0.4823, 0.4468)
|
15 |
+
CIFAR_STD = (0.2470, 0.2435, 0.2616)
|
16 |
+
|
17 |
+
# What are the classes in CIFAR10?
|
18 |
+
# Create class labels and convert to tuple
|
19 |
+
CIFAR_CLASSES = tuple(
|
20 |
+
c.capitalize()
|
21 |
+
for c in [
|
22 |
+
"plane",
|
23 |
+
"car",
|
24 |
+
"bird",
|
25 |
+
"cat",
|
26 |
+
"deer",
|
27 |
+
"dog",
|
28 |
+
"frog",
|
29 |
+
"horse",
|
30 |
+
"ship",
|
31 |
+
"truck",
|
32 |
+
]
|
33 |
+
)
|
34 |
+
|
35 |
+
# Needed to load model module
|
36 |
+
# What is the start LR and weight decay you'd prefer?
|
37 |
+
PREFERRED_START_LR = 5e-3
|
38 |
+
PREFERRED_WEIGHT_DECAY = 1e-5
|
modules/custom_resnet.py
ADDED
@@ -0,0 +1,456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module to define the model."""
|
2 |
+
|
3 |
+
# Resources
|
4 |
+
# https://lightning.ai/docs/pytorch/stable/starter/introduction.html
|
5 |
+
# https://lightning.ai/docs/pytorch/stable/starter/converting.html
|
6 |
+
# https://lightning.ai/docs/pytorch/stable/notebooks/lightning_examples/cifar10-baseline.html
|
7 |
+
|
8 |
+
import modules.config as config
|
9 |
+
import pytorch_lightning as pl
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import torch.optim as optim
|
14 |
+
import torchinfo
|
15 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
16 |
+
from torch_lr_finder import LRFinder
|
17 |
+
from torchmetrics import Accuracy
|
18 |
+
|
19 |
+
# What is the start LR and weight decay you'd prefer?
|
20 |
+
PREFERRED_START_LR = config.PREFERRED_START_LR
|
21 |
+
PREFERRED_WEIGHT_DECAY = config.PREFERRED_WEIGHT_DECAY
|
22 |
+
|
23 |
+
|
24 |
+
def detailed_model_summary(model, input_size):
|
25 |
+
"""Define a function to print the model summary."""
|
26 |
+
|
27 |
+
# https://github.com/TylerYep/torchinfo
|
28 |
+
torchinfo.summary(
|
29 |
+
model,
|
30 |
+
input_size=input_size,
|
31 |
+
batch_dim=0,
|
32 |
+
col_names=(
|
33 |
+
"input_size",
|
34 |
+
"kernel_size",
|
35 |
+
"output_size",
|
36 |
+
"num_params",
|
37 |
+
"trainable",
|
38 |
+
),
|
39 |
+
verbose=1,
|
40 |
+
col_width=16,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
############# Assignment 12 Model #############
|
45 |
+
|
46 |
+
|
47 |
+
# This is for Assignment 12
|
48 |
+
# Model used from Assignment 10 and converted to lightning model
|
49 |
+
class CustomResNet(pl.LightningModule):
|
50 |
+
"""This defines the structure of the NN."""
|
51 |
+
|
52 |
+
# Class variable to print shape
|
53 |
+
print_shape = False
|
54 |
+
# Default dropout value
|
55 |
+
dropout_value = 0.02
|
56 |
+
|
57 |
+
def __init__(self):
|
58 |
+
super().__init__()
|
59 |
+
|
60 |
+
# Define loss function
|
61 |
+
# https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
|
62 |
+
self.loss_function = torch.nn.CrossEntropyLoss()
|
63 |
+
|
64 |
+
# Define accuracy function
|
65 |
+
# https://torchmetrics.readthedocs.io/en/stable/classification/accuracy.html
|
66 |
+
self.accuracy_function = Accuracy(task="multiclass", num_classes=10)
|
67 |
+
|
68 |
+
# Add results dictionary
|
69 |
+
self.results = {
|
70 |
+
"train_loss": [],
|
71 |
+
"train_acc": [],
|
72 |
+
"test_loss": [],
|
73 |
+
"test_acc": [],
|
74 |
+
"val_loss": [],
|
75 |
+
"val_acc": [],
|
76 |
+
}
|
77 |
+
|
78 |
+
# Save misclassified images
|
79 |
+
self.misclassified_image_data = {"images": [], "ground_truths": [], "predicted_vals": []}
|
80 |
+
|
81 |
+
# LR
|
82 |
+
self.learning_rate = PREFERRED_START_LR
|
83 |
+
|
84 |
+
# Model Notes
|
85 |
+
|
86 |
+
# PrepLayer - Conv 3x3 s1, p1) >> BN >> RELU [64k]
|
87 |
+
# 1. Input size: 32x32x3
|
88 |
+
self.prep = nn.Sequential(
|
89 |
+
nn.Conv2d(
|
90 |
+
in_channels=3,
|
91 |
+
out_channels=64,
|
92 |
+
kernel_size=(3, 3),
|
93 |
+
stride=1,
|
94 |
+
padding=1,
|
95 |
+
dilation=1,
|
96 |
+
bias=False,
|
97 |
+
),
|
98 |
+
nn.BatchNorm2d(64),
|
99 |
+
nn.ReLU(),
|
100 |
+
nn.Dropout(self.dropout_value),
|
101 |
+
)
|
102 |
+
|
103 |
+
# Layer1: X = Conv 3x3 (s1, p1) >> MaxPool2D >> BN >> RELU [128k]
|
104 |
+
self.layer1_x = nn.Sequential(
|
105 |
+
nn.Conv2d(
|
106 |
+
in_channels=64,
|
107 |
+
out_channels=128,
|
108 |
+
kernel_size=(3, 3),
|
109 |
+
stride=1,
|
110 |
+
padding=1,
|
111 |
+
dilation=1,
|
112 |
+
bias=False,
|
113 |
+
),
|
114 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
115 |
+
nn.BatchNorm2d(128),
|
116 |
+
nn.ReLU(),
|
117 |
+
nn.Dropout(self.dropout_value),
|
118 |
+
)
|
119 |
+
|
120 |
+
# Layer1: R1 = ResBlock( (Conv-BN-ReLU-Conv-BN-ReLU))(X) [128k]
|
121 |
+
self.layer1_r1 = nn.Sequential(
|
122 |
+
nn.Conv2d(
|
123 |
+
in_channels=128,
|
124 |
+
out_channels=128,
|
125 |
+
kernel_size=(3, 3),
|
126 |
+
stride=1,
|
127 |
+
padding=1,
|
128 |
+
dilation=1,
|
129 |
+
bias=False,
|
130 |
+
),
|
131 |
+
nn.BatchNorm2d(128),
|
132 |
+
nn.ReLU(),
|
133 |
+
nn.Dropout(self.dropout_value),
|
134 |
+
nn.Conv2d(
|
135 |
+
in_channels=128,
|
136 |
+
out_channels=128,
|
137 |
+
kernel_size=(3, 3),
|
138 |
+
stride=1,
|
139 |
+
padding=1,
|
140 |
+
dilation=1,
|
141 |
+
bias=False,
|
142 |
+
),
|
143 |
+
nn.BatchNorm2d(128),
|
144 |
+
nn.ReLU(),
|
145 |
+
nn.Dropout(self.dropout_value),
|
146 |
+
)
|
147 |
+
|
148 |
+
# Layer 2: Conv 3x3 [256k], MaxPooling2D, BN, ReLU
|
149 |
+
self.layer2 = nn.Sequential(
|
150 |
+
nn.Conv2d(
|
151 |
+
in_channels=128,
|
152 |
+
out_channels=256,
|
153 |
+
kernel_size=(3, 3),
|
154 |
+
stride=1,
|
155 |
+
padding=1,
|
156 |
+
dilation=1,
|
157 |
+
bias=False,
|
158 |
+
),
|
159 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
160 |
+
nn.BatchNorm2d(256),
|
161 |
+
nn.ReLU(),
|
162 |
+
nn.Dropout(self.dropout_value),
|
163 |
+
)
|
164 |
+
|
165 |
+
# Layer 3: X = Conv 3x3 (s1, p1) >> MaxPool2D >> BN >> RELU [512k]
|
166 |
+
self.layer3_x = nn.Sequential(
|
167 |
+
nn.Conv2d(
|
168 |
+
in_channels=256,
|
169 |
+
out_channels=512,
|
170 |
+
kernel_size=(3, 3),
|
171 |
+
stride=1,
|
172 |
+
padding=1,
|
173 |
+
dilation=1,
|
174 |
+
bias=False,
|
175 |
+
),
|
176 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
177 |
+
nn.BatchNorm2d(512),
|
178 |
+
nn.ReLU(),
|
179 |
+
nn.Dropout(self.dropout_value),
|
180 |
+
)
|
181 |
+
|
182 |
+
# Layer 3: R2 = ResBlock( (Conv-BN-ReLU-Conv-BN-ReLU))(X) [512k]
|
183 |
+
self.layer3_r2 = nn.Sequential(
|
184 |
+
nn.Conv2d(
|
185 |
+
in_channels=512,
|
186 |
+
out_channels=512,
|
187 |
+
kernel_size=(3, 3),
|
188 |
+
stride=1,
|
189 |
+
padding=1,
|
190 |
+
dilation=1,
|
191 |
+
bias=False,
|
192 |
+
),
|
193 |
+
nn.BatchNorm2d(512),
|
194 |
+
nn.ReLU(),
|
195 |
+
nn.Dropout(self.dropout_value),
|
196 |
+
nn.Conv2d(
|
197 |
+
in_channels=512,
|
198 |
+
out_channels=512,
|
199 |
+
kernel_size=(3, 3),
|
200 |
+
stride=1,
|
201 |
+
padding=1,
|
202 |
+
dilation=1,
|
203 |
+
bias=False,
|
204 |
+
),
|
205 |
+
nn.BatchNorm2d(512),
|
206 |
+
nn.ReLU(),
|
207 |
+
nn.Dropout(self.dropout_value),
|
208 |
+
)
|
209 |
+
|
210 |
+
# MaxPooling with Kernel Size 4
|
211 |
+
# If stride is None, it is set to kernel_size
|
212 |
+
self.maxpool = nn.MaxPool2d(kernel_size=4, stride=4)
|
213 |
+
|
214 |
+
# FC Layer
|
215 |
+
self.fc = nn.Linear(512, 10)
|
216 |
+
|
217 |
+
# Save hyperparameters
|
218 |
+
self.save_hyperparameters()
|
219 |
+
|
220 |
+
def print_view(self, x, msg=""):
|
221 |
+
"""Print shape of the model"""
|
222 |
+
if self.print_shape:
|
223 |
+
if msg != "":
|
224 |
+
print(msg, "\n\t", x.shape, "\n")
|
225 |
+
else:
|
226 |
+
print(x.shape)
|
227 |
+
|
228 |
+
def forward(self, x):
|
229 |
+
"""Forward pass"""
|
230 |
+
|
231 |
+
# PrepLayer
|
232 |
+
x = self.prep(x)
|
233 |
+
self.print_view(x, "PrepLayer")
|
234 |
+
|
235 |
+
# Layer 1
|
236 |
+
x = self.layer1_x(x)
|
237 |
+
self.print_view(x, "Layer 1, X")
|
238 |
+
r1 = self.layer1_r1(x)
|
239 |
+
self.print_view(r1, "Layer 1, R1")
|
240 |
+
x = x + r1
|
241 |
+
self.print_view(x, "Layer 1, X + R1")
|
242 |
+
|
243 |
+
# Layer 2
|
244 |
+
x = self.layer2(x)
|
245 |
+
self.print_view(x, "Layer 2")
|
246 |
+
|
247 |
+
# Layer 3
|
248 |
+
x = self.layer3_x(x)
|
249 |
+
self.print_view(x, "Layer 3, X")
|
250 |
+
r2 = self.layer3_r2(x)
|
251 |
+
self.print_view(r2, "Layer 3, R2")
|
252 |
+
x = x + r2
|
253 |
+
self.print_view(x, "Layer 3, X + R2")
|
254 |
+
|
255 |
+
# MaxPooling
|
256 |
+
x = self.maxpool(x)
|
257 |
+
self.print_view(x, "Max Pooling")
|
258 |
+
|
259 |
+
# FC Layer
|
260 |
+
# Reshape before FC such that it becomes 1D
|
261 |
+
x = x.view(x.shape[0], -1)
|
262 |
+
self.print_view(x, "Reshape before FC")
|
263 |
+
x = self.fc(x)
|
264 |
+
self.print_view(x, "After FC")
|
265 |
+
|
266 |
+
# Softmax
|
267 |
+
return F.log_softmax(x, dim=-1)
|
268 |
+
|
269 |
+
# Alert: Remove this function later as Tuner is now being used to automatically find the best LR
|
270 |
+
def find_optimal_lr(self, train_loader):
|
271 |
+
"""Use LR Finder to find the best starting learning rate"""
|
272 |
+
|
273 |
+
# https://github.com/davidtvs/pytorch-lr-finder
|
274 |
+
# https://github.com/davidtvs/pytorch-lr-finder#notes
|
275 |
+
# https://github.com/davidtvs/pytorch-lr-finder/blob/master/torch_lr_finder/lr_finder.py
|
276 |
+
|
277 |
+
# New optimizer with default LR
|
278 |
+
tmp_optimizer = optim.Adam(self.parameters(), lr=PREFERRED_START_LR, weight_decay=PREFERRED_WEIGHT_DECAY)
|
279 |
+
|
280 |
+
# Create LR finder object
|
281 |
+
lr_finder = LRFinder(self, optimizer=tmp_optimizer, criterion=self.loss_function)
|
282 |
+
lr_finder.range_test(train_loader=train_loader, end_lr=10, num_iter=100)
|
283 |
+
# https://github.com/davidtvs/pytorch-lr-finder/issues/88
|
284 |
+
_, suggested_lr = lr_finder.plot(suggest_lr=True)
|
285 |
+
lr_finder.reset()
|
286 |
+
# plot.figure.savefig("LRFinder - Suggested Max LR.png")
|
287 |
+
|
288 |
+
print(f"Suggested Max LR: {suggested_lr}")
|
289 |
+
|
290 |
+
if suggested_lr is None:
|
291 |
+
suggested_lr = PREFERRED_START_LR
|
292 |
+
|
293 |
+
return suggested_lr
|
294 |
+
|
295 |
+
# optimiser function
|
296 |
+
def configure_optimizers(self):
|
297 |
+
"""Add ADAM optimizer to the lightning module"""
|
298 |
+
optimizer = optim.Adam(self.parameters(), lr=self.learning_rate, weight_decay=PREFERRED_WEIGHT_DECAY)
|
299 |
+
|
300 |
+
# Percent start for OneCycleLR
|
301 |
+
# Handles the case where max_epochs is less than 5
|
302 |
+
percent_start = 5 / int(self.trainer.max_epochs)
|
303 |
+
if percent_start >= 1:
|
304 |
+
percent_start = 0.3
|
305 |
+
|
306 |
+
# https://lightning.ai/docs/pytorch/stable/common/optimization.html#total-stepping-batches
|
307 |
+
scheduler_dict = {
|
308 |
+
"scheduler": OneCycleLR(
|
309 |
+
optimizer=optimizer,
|
310 |
+
max_lr=self.learning_rate,
|
311 |
+
total_steps=int(self.trainer.estimated_stepping_batches),
|
312 |
+
pct_start=percent_start,
|
313 |
+
div_factor=100,
|
314 |
+
three_phase=False,
|
315 |
+
anneal_strategy="linear",
|
316 |
+
final_div_factor=100,
|
317 |
+
verbose=False,
|
318 |
+
),
|
319 |
+
"interval": "step",
|
320 |
+
}
|
321 |
+
|
322 |
+
return {"optimizer": optimizer, "lr_scheduler": scheduler_dict}
|
323 |
+
|
324 |
+
# Define loss function
|
325 |
+
def compute_loss(self, prediction, target):
|
326 |
+
"""Compute Loss"""
|
327 |
+
|
328 |
+
# Calculate loss
|
329 |
+
loss = self.loss_function(prediction, target)
|
330 |
+
|
331 |
+
return loss
|
332 |
+
|
333 |
+
# Define accuracy function
|
334 |
+
def compute_accuracy(self, prediction, target):
|
335 |
+
"""Compute accuracy"""
|
336 |
+
|
337 |
+
# Calculate accuracy
|
338 |
+
acc = self.accuracy_function(prediction, target)
|
339 |
+
|
340 |
+
return acc * 100
|
341 |
+
|
342 |
+
# Function to compute loss and accuracy for both training and validation
|
343 |
+
def compute_metrics(self, batch):
|
344 |
+
"""Function to calculate loss and accuracy"""
|
345 |
+
|
346 |
+
# Get data and target from batch
|
347 |
+
data, target = batch
|
348 |
+
|
349 |
+
# Generate predictions using model
|
350 |
+
pred = self(data)
|
351 |
+
|
352 |
+
# Calculate loss for the batch
|
353 |
+
loss = self.compute_loss(prediction=pred, target=target)
|
354 |
+
|
355 |
+
# Calculate accuracy for the batch
|
356 |
+
acc = self.compute_accuracy(prediction=pred, target=target)
|
357 |
+
|
358 |
+
return loss, acc
|
359 |
+
|
360 |
+
# Get misclassified images based on how many images to return
|
361 |
+
def store_misclassified_images(self):
|
362 |
+
"""Get an array of misclassified images"""
|
363 |
+
|
364 |
+
self.misclassified_image_data = {"images": [], "ground_truths": [], "predicted_vals": []}
|
365 |
+
|
366 |
+
# Initialize the model to evaluation mode
|
367 |
+
self.eval()
|
368 |
+
|
369 |
+
# Disable gradient calculation while testing
|
370 |
+
with torch.no_grad():
|
371 |
+
for batch in self.trainer.test_dataloaders:
|
372 |
+
# Move data and labels to device
|
373 |
+
data, target = batch
|
374 |
+
data, target = data.to(self.device), target.to(self.device)
|
375 |
+
|
376 |
+
# Predict using model
|
377 |
+
pred = self(data)
|
378 |
+
|
379 |
+
# Get the index of the max log-probability
|
380 |
+
output = pred.argmax(dim=1)
|
381 |
+
|
382 |
+
# Save the incorrect predictions
|
383 |
+
incorrect_indices = ~output.eq(target)
|
384 |
+
|
385 |
+
# Store images incorrectly predicted, generated predictions and the actual value
|
386 |
+
self.misclassified_image_data["images"].extend(data[incorrect_indices])
|
387 |
+
self.misclassified_image_data["ground_truths"].extend(target[incorrect_indices])
|
388 |
+
self.misclassified_image_data["predicted_vals"].extend(output[incorrect_indices])
|
389 |
+
|
390 |
+
# training function
|
391 |
+
def training_step(self, batch, batch_idx):
|
392 |
+
"""Training step"""
|
393 |
+
|
394 |
+
# Compute loss and accuracy
|
395 |
+
loss, acc = self.compute_metrics(batch)
|
396 |
+
|
397 |
+
self.log("train_loss", loss, prog_bar=True, on_epoch=True, logger=True)
|
398 |
+
self.log("train_acc", acc, prog_bar=True, on_epoch=True, logger=True)
|
399 |
+
# Return training loss
|
400 |
+
return loss
|
401 |
+
|
402 |
+
# validation function
|
403 |
+
def validation_step(self, batch, batch_idx):
|
404 |
+
"""Validation step"""
|
405 |
+
|
406 |
+
# Compute loss and accuracy
|
407 |
+
loss, acc = self.compute_metrics(batch)
|
408 |
+
|
409 |
+
self.log("val_loss", loss, prog_bar=True, on_epoch=True, logger=True)
|
410 |
+
self.log("val_acc", acc, prog_bar=True, on_epoch=True, logger=True)
|
411 |
+
# Return validation loss
|
412 |
+
return loss
|
413 |
+
|
414 |
+
# test function will just use validation step
|
415 |
+
def test_step(self, batch, batch_idx):
|
416 |
+
"""Test step"""
|
417 |
+
|
418 |
+
# Compute loss and accuracy
|
419 |
+
loss, acc = self.compute_metrics(batch)
|
420 |
+
|
421 |
+
self.log("test_loss", loss, prog_bar=False, on_epoch=True, logger=True)
|
422 |
+
self.log("test_acc", acc, prog_bar=False, on_epoch=True, logger=True)
|
423 |
+
# Return validation loss
|
424 |
+
return loss
|
425 |
+
|
426 |
+
# At the end of train epoch append the training loss and accuracy to an instance variable called results
|
427 |
+
def on_train_epoch_end(self):
|
428 |
+
"""On train epoch end"""
|
429 |
+
|
430 |
+
# Append training loss and accuracy to results
|
431 |
+
self.results["train_loss"].append(self.trainer.callback_metrics["train_loss"].detach().item())
|
432 |
+
self.results["train_acc"].append(self.trainer.callback_metrics["train_acc"].detach().item())
|
433 |
+
|
434 |
+
# At the end of validation epoch append the validation loss and accuracy to an instance variable called results
|
435 |
+
def on_validation_epoch_end(self):
|
436 |
+
"""On validation epoch end"""
|
437 |
+
|
438 |
+
# Append validation loss and accuracy to results
|
439 |
+
self.results["test_loss"].append(self.trainer.callback_metrics["val_loss"].detach().item())
|
440 |
+
self.results["test_acc"].append(self.trainer.callback_metrics["val_acc"].detach().item())
|
441 |
+
|
442 |
+
# # At the end of test epoch append the test loss and accuracy to an instance variable called results
|
443 |
+
# def on_test_epoch_end(self):
|
444 |
+
# """On test epoch end"""
|
445 |
+
|
446 |
+
# # Append test loss and accuracy to results
|
447 |
+
# self.results["test_loss"].append(self.trainer.callback_metrics["test_loss"].detach().item())
|
448 |
+
# self.results["test_acc"].append(self.trainer.callback_metrics["test_acc"].detach().item())
|
449 |
+
|
450 |
+
# At the end of test save misclassified images, the predictions and ground truth in an instance variable called misclassified_image_data
|
451 |
+
def on_test_end(self):
|
452 |
+
"""On test end"""
|
453 |
+
|
454 |
+
print("Test ended! Saving misclassified images")
|
455 |
+
# Get misclassified images
|
456 |
+
self.store_misclassified_images()
|
modules/visualize.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import numpy as np
|
3 |
+
from pytorch_grad_cam import GradCAM
|
4 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
5 |
+
|
6 |
+
|
7 |
+
def convert_back_image(image):
|
8 |
+
"""Using mean and std deviation convert image back to normal"""
|
9 |
+
cifar10_mean = (0.4914, 0.4822, 0.4471)
|
10 |
+
cifar10_std = (0.2469, 0.2433, 0.2615)
|
11 |
+
image = image.numpy().astype(dtype=np.float32)
|
12 |
+
|
13 |
+
for i in range(image.shape[0]):
|
14 |
+
image[i] = (image[i] * cifar10_std[i]) + cifar10_mean[i]
|
15 |
+
|
16 |
+
# To stop throwing a warning that image pixels exceeds bounds
|
17 |
+
image = image.clip(0, 1)
|
18 |
+
|
19 |
+
return np.transpose(image, (1, 2, 0))
|
20 |
+
|
21 |
+
|
22 |
+
def plot_sample_training_images(batch_data, batch_label, class_label, num_images=30):
|
23 |
+
"""Function to plot sample images from the training data."""
|
24 |
+
images, labels = batch_data, batch_label
|
25 |
+
|
26 |
+
# Calculate the number of images to plot
|
27 |
+
num_images = min(num_images, len(images))
|
28 |
+
# calculate the number of rows and columns to plot
|
29 |
+
num_cols = 5
|
30 |
+
num_rows = int(np.ceil(num_images / num_cols))
|
31 |
+
|
32 |
+
# Initialize a subplot with the required number of rows and columns
|
33 |
+
fig, axs = plt.subplots(num_rows, num_cols, figsize=(10, 10))
|
34 |
+
|
35 |
+
# Iterate through the images and plot them in the grid along with class labels
|
36 |
+
|
37 |
+
for img_index in range(1, num_images + 1):
|
38 |
+
plt.subplot(num_rows, num_cols, img_index)
|
39 |
+
plt.tight_layout()
|
40 |
+
plt.axis("off")
|
41 |
+
plt.imshow(convert_back_image(images[img_index - 1]))
|
42 |
+
plt.title(class_label[labels[img_index - 1].item()])
|
43 |
+
plt.xticks([])
|
44 |
+
plt.yticks([])
|
45 |
+
|
46 |
+
return fig, axs
|
47 |
+
|
48 |
+
|
49 |
+
def plot_train_test_metrics(results):
|
50 |
+
"""
|
51 |
+
Function to plot the training and test metrics.
|
52 |
+
"""
|
53 |
+
# Extract train_losses, train_acc, test_losses, test_acc from results
|
54 |
+
train_losses = results["train_loss"]
|
55 |
+
train_acc = results["train_acc"]
|
56 |
+
test_losses = results["test_loss"]
|
57 |
+
test_acc = results["test_acc"]
|
58 |
+
|
59 |
+
# Plot the graphs in a 1x2 grid showing the training and test metrics
|
60 |
+
fig, axs = plt.subplots(1, 2, figsize=(16, 8))
|
61 |
+
|
62 |
+
# Loss plot
|
63 |
+
axs[0].plot(train_losses, label="Train")
|
64 |
+
axs[0].plot(test_losses, label="Test")
|
65 |
+
axs[0].set_title("Loss")
|
66 |
+
axs[0].legend(loc="upper right")
|
67 |
+
|
68 |
+
# Accuracy plot
|
69 |
+
axs[1].plot(train_acc, label="Train")
|
70 |
+
axs[1].plot(test_acc, label="Test")
|
71 |
+
axs[1].set_title("Accuracy")
|
72 |
+
axs[1].legend(loc="upper right")
|
73 |
+
|
74 |
+
return fig, axs
|
75 |
+
|
76 |
+
|
77 |
+
def plot_misclassified_images(data, class_label, num_images=10):
|
78 |
+
"""Plot the misclassified images from the test dataset."""
|
79 |
+
# Calculate the number of images to plot
|
80 |
+
num_images = min(num_images, len(data["ground_truths"]))
|
81 |
+
# calculate the number of rows and columns to plot
|
82 |
+
num_cols = 5
|
83 |
+
num_rows = int(np.ceil(num_images / num_cols))
|
84 |
+
|
85 |
+
# Initialize a subplot with the required number of rows and columns
|
86 |
+
fig, axs = plt.subplots(num_rows, num_cols, figsize=(num_cols * 2, num_rows * 2))
|
87 |
+
|
88 |
+
# Iterate through the images and plot them in the grid along with class labels
|
89 |
+
|
90 |
+
for img_index in range(1, num_images + 1):
|
91 |
+
# Get the ground truth and predicted labels for the image
|
92 |
+
label = data["ground_truths"][img_index - 1].cpu().item()
|
93 |
+
pred = data["predicted_vals"][img_index - 1].cpu().item()
|
94 |
+
# Get the image
|
95 |
+
image = data["images"][img_index - 1].cpu()
|
96 |
+
# Plot the image
|
97 |
+
plt.subplot(num_rows, num_cols, img_index)
|
98 |
+
plt.tight_layout()
|
99 |
+
plt.axis("off")
|
100 |
+
plt.imshow(convert_back_image(image))
|
101 |
+
plt.title(f"""ACT: {class_label[label]} \nPRED: {class_label[pred]}""")
|
102 |
+
plt.xticks([])
|
103 |
+
plt.yticks([])
|
104 |
+
|
105 |
+
return fig, axs
|
106 |
+
|
107 |
+
|
108 |
+
# Function to plot gradcam for misclassified images using pytorch_grad_cam
|
109 |
+
def plot_gradcam_images(
|
110 |
+
model,
|
111 |
+
data,
|
112 |
+
class_label,
|
113 |
+
target_layers,
|
114 |
+
targets=None,
|
115 |
+
num_images=10,
|
116 |
+
image_weight=0.25,
|
117 |
+
):
|
118 |
+
"""Show gradcam for misclassified images"""
|
119 |
+
|
120 |
+
# Calculate the number of images to plot
|
121 |
+
num_images = min(num_images, len(data["ground_truths"]))
|
122 |
+
# calculate the number of rows and columns to plot
|
123 |
+
num_cols = 5
|
124 |
+
num_rows = int(np.ceil(num_images / num_cols))
|
125 |
+
|
126 |
+
# Initialize a subplot with the required number of rows and columns
|
127 |
+
fig, axs = plt.subplots(num_rows, num_cols, figsize=(num_cols * 2, num_rows * 2))
|
128 |
+
|
129 |
+
# Initialize the GradCAM object
|
130 |
+
# https://github.com/jacobgil/pytorch-grad-cam/blob/master/pytorch_grad_cam/grad_cam.py
|
131 |
+
# https://github.com/jacobgil/pytorch-grad-cam/blob/master/pytorch_grad_cam/base_cam.py
|
132 |
+
# Alert: Change the device to cpu for gradio app
|
133 |
+
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
|
134 |
+
|
135 |
+
# Iterate through the images and plot them in the grid along with class labels
|
136 |
+
for img_index in range(1, num_images + 1):
|
137 |
+
# Extract elements from the data dictionary
|
138 |
+
# Get the ground truth and predicted labels for the image
|
139 |
+
label = data["ground_truths"][img_index - 1].cpu().item()
|
140 |
+
pred = data["predicted_vals"][img_index - 1].cpu().item()
|
141 |
+
# Get the image
|
142 |
+
image = data["images"][img_index - 1].cpu()
|
143 |
+
|
144 |
+
# Get the GradCAM output
|
145 |
+
# https://github.com/jacobgil/pytorch-grad-cam/blob/master/pytorch_grad_cam/utils/model_targets.py
|
146 |
+
grad_cam_output = cam(
|
147 |
+
input_tensor=image.unsqueeze(0),
|
148 |
+
targets=targets,
|
149 |
+
aug_smooth=True,
|
150 |
+
eigen_smooth=True,
|
151 |
+
)
|
152 |
+
grad_cam_output = grad_cam_output[0, :]
|
153 |
+
|
154 |
+
# Overlay gradcam on top of numpy image
|
155 |
+
overlayed_image = show_cam_on_image(
|
156 |
+
convert_back_image(image),
|
157 |
+
grad_cam_output,
|
158 |
+
use_rgb=True,
|
159 |
+
image_weight=image_weight,
|
160 |
+
)
|
161 |
+
|
162 |
+
# Plot the image
|
163 |
+
plt.subplot(num_rows, num_cols, img_index)
|
164 |
+
plt.tight_layout()
|
165 |
+
plt.axis("off")
|
166 |
+
plt.imshow(overlayed_image)
|
167 |
+
plt.title(f"""ACT: {class_label[label]} \nPRED: {class_label[pred]}""")
|
168 |
+
plt.xticks([])
|
169 |
+
plt.yticks([])
|
170 |
+
return fig, axs
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
albumentations==1.3.1
|
2 |
+
grad-cam==1.4.8
|
3 |
+
gradio==3.39.0
|
4 |
+
numpy== 1.25.0
|
5 |
+
pillow==9.4.0
|
6 |
+
pytorch-lightning==2.0.6
|
7 |
+
pytorch==2.0.1
|
8 |
+
torch_lr_finder==0.2.1
|
9 |
+
torchinfo==1.8.0
|
10 |
+
torchmetrics==0.11.4
|
11 |
+
torchvision==0.15.2
|