# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is modified from https://github.com/haotian-liu/LLaVA/ from typing import List, Optional, Tuple, Union import os, os.path as osp import torch from transformers import ( LlamaForCausalLM, LlamaConfig, PreTrainedModel, AutoConfig, AutoModel, GenerationConfig, PretrainedConfig, PreTrainedModel, ) from transformers.modeling_outputs import CausalLMOutputWithPast from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM from ..multimodal_encoder.builder import build_vision_tower from ..multimodal_projector.builder import build_mm_projector from ..configuration_llava import LlavaConfig from ..utils import get_model_config from .builder import build_llm_and_tokenizer class LlavaLlamaConfig(LlavaConfig): model_type = "llava_llama" ## FIXME we will follow the convention to add a new class for CausalLM in the future class LlavaLlamaModel(LlavaMetaModel, LlavaMetaForCausalLM, PreTrainedModel): config_class = LlavaLlamaConfig main_input_name = "input_embeds" supports_gradient_checkpointing = True def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None: super().__init__(config) return self.init_vlm(config=config, *args, **kwargs) @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, cache_dir: Optional[Union[str, os.PathLike]] = None, ignore_mismatched_sizes: bool = False, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", use_safetensors: bool = None, **kwargs, ): if hasattr(cls, "load_pretrained"): return cls.load_pretrained(pretrained_model_name_or_path, *model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, revision=revision, use_safetensors=use_safetensors, **kwargs ) return super(LlavaLlamaModel).from_pretrained(pretrained_model_name_or_path, *model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, revision=revision, use_safetensors=use_safetensors, **kwargs) def forward( self, input_ids: torch.LongTensor = None, images: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: self.freezed_module_patch() if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels, ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, images ) # Note (kentang-mit@): we have a unit test for this function. if self.training: ( _, new_position_ids, new_attention_mask, _, new_inputs_embeds, new_labels, sorted_seqlens_in_batch, ) = self.repack_multimodal_data( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels, ) new_input_ids = None past_key_values = None else: new_attention_mask = attention_mask new_position_ids = position_ids new_inputs_embeds = inputs_embeds new_labels = labels sorted_seqlens_in_batch = attention_mask.sum(-1).int() new_input_ids = input_ids outputs = self.llm.forward( input_ids=new_input_ids, attention_mask=new_attention_mask, position_ids=new_position_ids, past_key_values=past_key_values, inputs_embeds=new_inputs_embeds, labels=new_labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, seqlens_in_batch=sorted_seqlens_in_batch, ) return outputs @torch.no_grad() def generate( self, input_ids: Optional[torch.FloatTensor] = None, images: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, **generation_kwargs, ): if images is not None: ( _, _, attention_mask, _, inputs_embeds, _, ) = self.prepare_inputs_labels_for_multimodal( input_ids, None, attention_mask, None, None, images ) else: inputs_embeds = self.get_input_embeddings()(input_ids) inputs_embeds = inputs_embeds.to(self.dtype) outputs = self.llm.generate( inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generation_kwargs ) return outputs AutoConfig.register("llava_llama", LlavaLlamaConfig) AutoModel.register(LlavaLlamaConfig, LlavaLlamaModel)