#!/usr/bin/python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # # LASER Language-Agnostic SEntence Representations # is a toolkit to calculate multilingual sentence embeddings # and to use them for document classification, bitext filtering # and mining # # -------------------------------------------------------- # # Calculate embeddings of MLDoc corpus import os import sys import argparse # get environment assert os.environ.get('LASER'), 'Please set the enviornment variable LASER' LASER = os.environ['LASER'] sys.path.append(LASER + '/source') sys.path.append(LASER + '/source/tools') from embed import SentenceEncoder, EncodeLoad, EncodeFile from text_processing import Token, BPEfastApply, SplitLines, JoinEmbed ############################################################################### parser = argparse.ArgumentParser('LASER: calculate embeddings for MLDoc') parser.add_argument( '--mldoc', type=str, default='MLDoc', help='Directory of the MLDoc corpus') parser.add_argument( '--data_dir', type=str, default='embed', help='Base directory for created files') # options for encoder parser.add_argument( '--encoder', type=str, required=True, help='Encoder to be used') parser.add_argument( '--bpe_codes', type=str, required=True, help='Directory of the tokenized data') parser.add_argument( '--lang', '-L', nargs='+', default=None, help="List of languages to test on") parser.add_argument( '--buffer-size', type=int, default=10000, help='Buffer size (sentences)') parser.add_argument( '--max-tokens', type=int, default=12000, help='Maximum number of tokens to process in a batch') parser.add_argument( '--max-sentences', type=int, default=None, help='Maximum number of sentences to process in a batch') parser.add_argument( '--cpu', action='store_true', help='Use CPU instead of GPU') parser.add_argument( '--verbose', action='store_true', help='Detailed output') args = parser.parse_args() print('LASER: calculate embeddings for MLDoc') if not os.path.exists(args.data_dir): os.mkdir(args.data_dir) enc = EncodeLoad(args) print('\nProcessing:') for part in ('train1000', 'dev', 'test'): # for lang in "en" if part == 'train1000' else args.lang: for lang in args.lang: cfname = os.path.join(args.data_dir, 'mldoc.' + part) Token(cfname + '.txt.' + lang, cfname + '.tok.' + lang, lang=lang, romanize=(True if lang == 'el' else False), lower_case=True, gzip=False, verbose=args.verbose, over_write=False) SplitLines(cfname + '.tok.' + lang, cfname + '.split.' + lang, cfname + '.sid.' + lang) BPEfastApply(cfname + '.split.' + lang, cfname + '.split.bpe.' + lang, args.bpe_codes, verbose=args.verbose, over_write=False) EncodeFile(enc, cfname + '.split.bpe.' + lang, cfname + '.split.enc.' + lang, verbose=args.verbose, over_write=False, buffer_size=args.buffer_size) JoinEmbed(cfname + '.split.enc.' + lang, cfname + '.sid.' + lang, cfname + '.enc.' + lang)