#!/usr/bin/python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # # LASER Language-Agnostic SEntence Representations # is a toolkit to calculate multilingual sentence embeddings # and to use them for document classification, bitext filtering # and mining # # -------------------------------------------------------- # # XNLI import os import sys import argparse import pdb import faiss import numpy as np # get environment assert os.environ.get('LASER'), 'Please set the enviornment variable LASER' LASER = os.environ['LASER'] sys.path.append(LASER + '/source') sys.path.append(LASER + '/source/tools') from embed import SentenceEncoder, EncodeLoad, EncodeFile from text_processing import Token, BPEfastApply ################################################################################ parser = argparse.ArgumentParser('LASER: training and evaluation for XNLI') parser.add_argument('--tsv', type=str, default='tsv', help='Directory of the TSV file') parser.add_argument('--data_dir', type=str, default='.', help='Base directory for created files') parser.add_argument('--bpe_codes', type=str, required=True, help='Directory of the tokenized data') parser.add_argument('--verbose', action='store_true', help='Detailed output') # options for encoder parser.add_argument('--encoder', type=str, required=True, help='encoder to be used') parser.add_argument( '--lang', '-L', nargs='+', default=None, help="List of languages to test on") parser.add_argument('--buffer-size', type=int, default=10000, help='Buffer size (sentences)') parser.add_argument('--max-tokens', type=int, default=12000, help='Maximum number of tokens to process in a batch') parser.add_argument('--max-sentences', type=int, default=None, help='Maximum number of sentences to process in a batch') parser.add_argument('--cpu', action='store_true', help='Use CPU instead of GPU') args = parser.parse_args() print('LASER: training and evaluation for XNLI') if not os.path.exists(args.data_dir): os.mkdir(args.data_dir) enc = EncodeLoad(args) languages_train = ('en',) languages = ('en', 'ar', 'bg', 'de', 'el', 'es', 'fr', 'hi', 'ru', 'sw', 'th', 'tr', 'ur', 'vi', 'zh') print('\nProcessing train:') for lang in languages_train: for part in ('prem', 'hyp'): cfname = os.path.join(args.data_dir, 'xnli.train.' + part + '.') Token(cfname + lang, cfname + 'tok.' + lang, lang=lang, romanize=True if lang=='el' else False, lower_case=True, gzip=True, verbose=args.verbose, over_write=False) BPEfastApply(cfname + 'tok.' + lang, cfname + 'bpe.' + lang, args.bpe_codes, verbose=args.verbose, over_write=False) EncodeFile(enc, cfname + 'bpe.' + lang, cfname + 'enc.' + lang, verbose=args.verbose, over_write=False, buffer_size=args.buffer_size) for corpus in ('xnli.dev', 'xnli.test'): print('\nProcessing {}:'.format(corpus)) for part in ('prem', 'hyp'): cfname = os.path.join(args.data_dir, corpus + '.' + part + '.') for lang in languages: Token(cfname + lang, cfname + 'tok.' + lang, lang=lang, romanize=True if lang=='el' else False, lower_case=True, gzip=False, verbose=args.verbose, over_write=False) BPEfastApply(cfname + 'tok.' + lang, cfname + 'bpe.' + lang, args.bpe_codes, verbose=args.verbose, over_write=False) EncodeFile(enc, cfname + 'bpe.' + lang, cfname + 'enc.' + lang, verbose=args.verbose, over_write=False, buffer_size=args.buffer_size)