Spaces:
Sleeping
Sleeping
add chunk function
Browse files
app.py
CHANGED
@@ -69,21 +69,33 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
69 |
torch_dtype=torch.float16
|
70 |
)
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
def generate_translation(system_prompt, prompt):
|
89 |
full_prompt = f"System: {system_prompt}\nUser: {prompt}\nAssistant:"
|
@@ -160,6 +172,21 @@ def basic_translate(source_sentence, src_language, tgt_language):
|
|
160 |
translations.append(translation)
|
161 |
return translations
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
def plan2align_translate_text(text, session_id, model, tokenizer, device, src_language, task_language, max_iterations_value, threshold_value, good_ref_contexts_num_value, reward_model_type):
|
164 |
result = translate_text(
|
165 |
text = text,
|
@@ -255,23 +282,67 @@ def process_text(text, src_language, target_language, max_iterations_value, thre
|
|
255 |
best_of_n_output = ""
|
256 |
mpc_output = ""
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
if
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
return orig_output, plan2align_output, best_of_n_output, mpc_output
|
277 |
|
@@ -310,6 +381,10 @@ with gr.Blocks(title="Test-Time Machine Translation with Plan2Align") as demo:
|
|
310 |
value=["Original", "Plan2Align"],
|
311 |
label="Translation Methods"
|
312 |
)
|
|
|
|
|
|
|
|
|
313 |
translate_button = gr.Button("Translate")
|
314 |
with gr.Column(scale=2):
|
315 |
original_output = gr.Textbox(
|
@@ -343,6 +418,7 @@ with gr.Blocks(title="Test-Time Machine Translation with Plan2Align") as demo:
|
|
343 |
threshold_input,
|
344 |
good_ref_contexts_num_input,
|
345 |
translation_methods_input,
|
|
|
346 |
state
|
347 |
],
|
348 |
outputs=[original_output, plan2align_output, best_of_n_output, mpc_output]
|
@@ -350,11 +426,11 @@ with gr.Blocks(title="Test-Time Machine Translation with Plan2Align") as demo:
|
|
350 |
|
351 |
gr.Examples(
|
352 |
examples=[
|
353 |
-
["台灣夜市文化豐富多彩,從士林夜市到饒河街夜市,提供各種美食、遊戲和購物體驗,吸引了無數遊客。", "Traditional Chinese", "English", 2, 0.7, 1, ["Original", "Plan2Align"]],
|
354 |
-
["台北101曾經是世界最高的建築物,它不僅是台灣的地標,也象徵著經濟成就和創新精神。", "Traditional Chinese", "Russian", 2, 0.7, 1, ["Original", "Plan2Align"]],
|
355 |
-
["阿里山日出和森林鐵路是台灣最著名的自然景觀之一,每年吸引數十萬遊客前來欣賞雲海和壯麗的日出。", "Traditional Chinese", "German", 2, 0.7, 1, ["Original", "Plan2Align"]],
|
356 |
-
["珍珠奶茶,這款源自台灣的獨特飲品,不僅在台灣本地深受喜愛,更以其獨特的風味和口感,在全球掀起了一股熱潮,成為了一種跨越文化、風靡全球的時尚飲品。", "Traditional Chinese", "Japanese", 3, 0.7, 3, ["Original", "Plan2Align"]],
|
357 |
-
["原住民文化如同一片深邃的星空,閃爍著無數璀璨的傳統與藝術光芒。他們的歌舞,是與祖靈對話的旋律,是與自然共鳴的節奏,每一個舞步、每一聲吟唱,都承載著古老的傳說與智慧。編織,是他們巧手下的詩篇,一絲一線,交織出生命的紋理,也編織出對土地的熱愛與敬畏。木雕,則是他們與自然對話的雕塑,每一刀、每一鑿,都刻畫著對萬物的觀察與敬意,也雕琢出對祖先的追憶與傳承。", "Traditional Chinese", "Korean", 5, 0.7, 5, ["Original", "Plan2Align"]]
|
358 |
],
|
359 |
inputs=[
|
360 |
source_text,
|
@@ -363,7 +439,8 @@ with gr.Blocks(title="Test-Time Machine Translation with Plan2Align") as demo:
|
|
363 |
max_iterations_input,
|
364 |
threshold_input,
|
365 |
good_ref_contexts_num_input,
|
366 |
-
translation_methods_input
|
|
|
367 |
],
|
368 |
outputs=[original_output, plan2align_output, best_of_n_output, mpc_output],
|
369 |
fn=process_text
|
|
|
69 |
torch_dtype=torch.float16
|
70 |
)
|
71 |
|
72 |
+
import spacy
|
73 |
+
lang_map = {
|
74 |
+
"English": ("en", "en_core_web_sm"),
|
75 |
+
"Russian": ("ru", "ru_core_news_sm"),
|
76 |
+
"German": ("de", "de_core_news_sm"),
|
77 |
+
"Japanese": ("ja", "ja_core_news_sm"),
|
78 |
+
"Korean": ("ko", "ko_core_news_sm"),
|
79 |
+
"Spanish": ("es", "es_core_news_sm"),
|
80 |
+
"Simplified Chinese": ("zh", "zh_core_web_sm"),
|
81 |
+
"Traditional Chinese": ("zh", "zh_core_web_sm")
|
82 |
+
}
|
83 |
+
|
84 |
+
def get_lang_and_nlp(language):
|
85 |
+
if language not in lang_map:
|
86 |
+
raise ValueError(f"Unsupported language: {language}")
|
87 |
+
lang_code, model_name = lang_map[language]
|
88 |
+
return lang_code, spacy.load(model_name)
|
89 |
+
|
90 |
+
def segment_sentences_by_punctuation(text, src_nlp):
|
91 |
+
segmented_sentences = []
|
92 |
+
paragraphs = text.split('\n')
|
93 |
+
for paragraph in paragraphs:
|
94 |
+
if paragraph.strip():
|
95 |
+
doc = src_nlp(paragraph)
|
96 |
+
for sent in doc.sents:
|
97 |
+
segmented_sentences.append(sent.text.strip())
|
98 |
+
return segmented_sentences
|
99 |
|
100 |
def generate_translation(system_prompt, prompt):
|
101 |
full_prompt = f"System: {system_prompt}\nUser: {prompt}\nAssistant:"
|
|
|
172 |
translations.append(translation)
|
173 |
return translations
|
174 |
|
175 |
+
def summary_translate(src_text, temp_tgt_text, tgt_language):
|
176 |
+
system_prompts = ["You are a helpful rephraser. You only output the rephrased result."]
|
177 |
+
translations = []
|
178 |
+
for prompt_style in system_prompts:
|
179 |
+
prompt = f"### Rephrase the following in {tgt_language}."
|
180 |
+
prompt += f"\n### Input:\n {textemp_tgt_textt}"
|
181 |
+
prompt += f"\n### Rephrased:\n"
|
182 |
+
translation = generate_translation(prompt_style, prompt)
|
183 |
+
translations.append(translation)
|
184 |
+
|
185 |
+
best, score = evaluate_candidates(src_text, translations, target_language, session_id)
|
186 |
+
if cand_list:
|
187 |
+
return best, score
|
188 |
+
return "", 0
|
189 |
+
|
190 |
def plan2align_translate_text(text, session_id, model, tokenizer, device, src_language, task_language, max_iterations_value, threshold_value, good_ref_contexts_num_value, reward_model_type):
|
191 |
result = translate_text(
|
192 |
text = text,
|
|
|
282 |
best_of_n_output = ""
|
283 |
mpc_output = ""
|
284 |
|
285 |
+
src_lang, src_nlp = get_lang_and_nlp(src_language)
|
286 |
+
source_sentence = text.replace("\n", " ")
|
287 |
+
source_segments = segment_sentences_by_punctuation(source_sentence, src_nlp)
|
288 |
+
|
289 |
+
if chunk_size == -1:
|
290 |
+
chunks = [' '.join(source_segments)]
|
291 |
+
else:
|
292 |
+
chunks = [' '.join(source_segments[i:i+chunk_size]) for i in range(0, len(source_segments), chunk_size)]
|
293 |
+
|
294 |
+
org_translated_chunks = []
|
295 |
+
p2a_translated_chunks = []
|
296 |
+
bfn_translated_chunks = []
|
297 |
+
mpc_translated_chunks = []
|
298 |
+
|
299 |
+
for chunk in chunks:
|
300 |
+
if "Original" in translation_methods:
|
301 |
+
translation, _ = original_translation(chunk, src_language, target_language, session_id)
|
302 |
+
org_translated_chunks.append(translation)
|
303 |
+
if "Plan2Align" in translation_methods:
|
304 |
+
translation, _ = plan2align_translate_text(
|
305 |
+
chunk, session_id, model, tokenizer, device, src_language, target_language,
|
306 |
+
max_iterations_value, threshold_value, good_ref_contexts_num_value, "metricx"
|
307 |
+
)
|
308 |
+
p2a_translated_chunks.append(translation)
|
309 |
+
if "Best-of-N" in translation_methods:
|
310 |
+
translation, _ = best_of_n_translation(chunk, src_language, target_language, max_iterations_value, session_id)
|
311 |
+
bfn_translated_chunks.append(translation)
|
312 |
+
if "MPC" in translation_methods:
|
313 |
+
translation, _ = mpc_translation(chunk, src_language, target_language, max_iterations_value, session_id)
|
314 |
+
mpc_translated_chunks.append(translation)
|
315 |
+
|
316 |
+
org_combined_translation = ' '.join(org_translated_chunks)
|
317 |
+
p2a_combined_translation = ' '.join(p2a_translated_chunks)
|
318 |
+
bfn_combined_translation = ' '.join(bfn_translated_chunks)
|
319 |
+
mpc_combined_translation = ' '.join(mpc_translated_chunks)
|
320 |
+
|
321 |
+
orig, best_score = summary_translate(org_combined_translation, target_language)
|
322 |
+
orig_output = f"{orig}\n\nScore: {best_score:.2f}"
|
323 |
+
plan2align_trans, best_score = summary_translate(p2a_combined_translation, target_language)
|
324 |
+
plan2align_output = f"{plan2align_trans}\n\nScore: {best_score:.2f}"
|
325 |
+
best_candidate, best_score = summary_translate(bfn_combined_translation, target_language)
|
326 |
+
best_of_n_output = f"{best_candidate}\n\nScore: {best_score:.2f}"
|
327 |
+
mpc_candidate, best_score = summary_translate(mpc_combined_translation, target_language)
|
328 |
+
mpc_output = f"{mpc_candidate}\n\nScore: {mpc_score:.2f}"
|
329 |
+
|
330 |
+
# if "Original" in translation_methods:
|
331 |
+
# orig, best_score = original_translation(text, src_language, target_language, session_id)
|
332 |
+
# orig_output = f"{orig}\n\nScore: {best_score:.2f}"
|
333 |
+
# if "Plan2Align" in translation_methods:
|
334 |
+
# plan2align_trans, best_score = plan2align_translate_text(
|
335 |
+
# text, session_id, model, tokenizer, device, src_language, target_language,
|
336 |
+
# max_iterations_value, threshold_value, good_ref_contexts_num_value, "metricx"
|
337 |
+
# )
|
338 |
+
# plan2align_output = f"{plan2align_trans}\n\nScore: {best_score:.2f}"
|
339 |
+
# if "Best-of-N" in translation_methods:
|
340 |
+
# best_candidate, best_score = best_of_n_translation(text, src_language, target_language, max_iterations_value, session_id)
|
341 |
+
# best_of_n_output = f"{best_candidate}\n\nScore: {best_score:.2f}"
|
342 |
+
# if "MPC" in translation_methods:
|
343 |
+
# mpc_candidate, mpc_score = mpc_translation(text, src_language, target_language,
|
344 |
+
# max_iterations_value, session_id)
|
345 |
+
# mpc_output = f"{mpc_candidate}\n\nScore: {mpc_score:.2f}"
|
346 |
|
347 |
return orig_output, plan2align_output, best_of_n_output, mpc_output
|
348 |
|
|
|
381 |
value=["Original", "Plan2Align"],
|
382 |
label="Translation Methods"
|
383 |
)
|
384 |
+
chunk_size_input = gr.Number( # ✅ add chunk function
|
385 |
+
label="Chunk Size (Number of sentences per translation, -1 for all)",
|
386 |
+
value=-1
|
387 |
+
)
|
388 |
translate_button = gr.Button("Translate")
|
389 |
with gr.Column(scale=2):
|
390 |
original_output = gr.Textbox(
|
|
|
418 |
threshold_input,
|
419 |
good_ref_contexts_num_input,
|
420 |
translation_methods_input,
|
421 |
+
chunk_size_input, # ✅ add chunk function
|
422 |
state
|
423 |
],
|
424 |
outputs=[original_output, plan2align_output, best_of_n_output, mpc_output]
|
|
|
426 |
|
427 |
gr.Examples(
|
428 |
examples=[
|
429 |
+
["台灣夜市文化豐富多彩,從士林夜市到饒河街夜市,提供各種美食、遊戲和購物體驗,吸引了無數遊客。", "Traditional Chinese", "English", 2, 0.7, 1, ["Original", "Plan2Align"], -1],
|
430 |
+
["台北101曾經是世界最高的建築物,它不僅是台灣的地標,也象徵著經濟成就和創新精神。", "Traditional Chinese", "Russian", 2, 0.7, 1, ["Original", "Plan2Align"], -1],
|
431 |
+
["阿里山日出和森林鐵路是台灣最著名的自然景觀之一,每年吸引數十萬遊客前來欣賞雲海和壯麗的日出。", "Traditional Chinese", "German", 2, 0.7, 1, ["Original", "Plan2Align"], -1],
|
432 |
+
["珍珠奶茶,這款源自台灣的獨特飲品,不僅在台灣本地深受喜愛,更以其獨特的風味和口感,在全球掀起了一股熱潮,成為了一種跨越文化、風靡全球的時尚飲品。", "Traditional Chinese", "Japanese", 3, 0.7, 3, ["Original", "Plan2Align"], -1],
|
433 |
+
["原住民文化如同一片深邃的星空,閃爍著無數璀璨的傳統與藝術光芒。他們的歌舞,是與祖靈對話的旋律,是與自然共鳴的節奏,每一個舞步、每一聲吟唱,都承載著古老的傳說與智慧。編織,是他們巧手下的詩篇,一絲一線,交織出生命的紋理,也編織出對土地的熱愛與敬畏。木雕,則是他們與自然對話的雕塑,每一刀、每一鑿,都刻畫著對萬物的觀察與敬意,也雕琢出對祖先的追憶與傳承。", "Traditional Chinese", "Korean", 5, 0.7, 5, ["Original", "Plan2Align"], -1]
|
434 |
],
|
435 |
inputs=[
|
436 |
source_text,
|
|
|
439 |
max_iterations_input,
|
440 |
threshold_input,
|
441 |
good_ref_contexts_num_input,
|
442 |
+
translation_methods_input,
|
443 |
+
chunk_size_input # ✅ add chunk function
|
444 |
],
|
445 |
outputs=[original_output, plan2align_output, best_of_n_output, mpc_output],
|
446 |
fn=process_text
|