Spaces:
Sleeping
Sleeping
#!/usr/bin/python | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
# | |
# LASER Language-Agnostic SEntence Representations | |
# is a toolkit to calculate multilingual sentence embeddings | |
# and to use them for document classification, bitext filtering | |
# and mining | |
# | |
# -------------------------------------------------------- | |
# | |
# Calculate embeddings of MLDoc corpus | |
import os | |
import sys | |
import argparse | |
# get environment | |
assert os.environ.get('LASER'), 'Please set the enviornment variable LASER' | |
LASER = os.environ['LASER'] | |
sys.path.append(LASER + '/source') | |
sys.path.append(LASER + '/source/tools') | |
from embed import SentenceEncoder, EncodeLoad, EncodeFile | |
from text_processing import Token, BPEfastApply, SplitLines, JoinEmbed | |
############################################################################### | |
parser = argparse.ArgumentParser('LASER: calculate embeddings for MLDoc') | |
parser.add_argument( | |
'--mldoc', type=str, default='MLDoc', | |
help='Directory of the MLDoc corpus') | |
parser.add_argument( | |
'--data_dir', type=str, default='embed', | |
help='Base directory for created files') | |
# options for encoder | |
parser.add_argument( | |
'--encoder', type=str, required=True, | |
help='Encoder to be used') | |
parser.add_argument( | |
'--bpe_codes', type=str, required=True, | |
help='Directory of the tokenized data') | |
parser.add_argument( | |
'--lang', '-L', nargs='+', default=None, | |
help="List of languages to test on") | |
parser.add_argument( | |
'--buffer-size', type=int, default=10000, | |
help='Buffer size (sentences)') | |
parser.add_argument( | |
'--max-tokens', type=int, default=12000, | |
help='Maximum number of tokens to process in a batch') | |
parser.add_argument( | |
'--max-sentences', type=int, default=None, | |
help='Maximum number of sentences to process in a batch') | |
parser.add_argument( | |
'--cpu', action='store_true', | |
help='Use CPU instead of GPU') | |
parser.add_argument( | |
'--verbose', action='store_true', | |
help='Detailed output') | |
args = parser.parse_args() | |
print('LASER: calculate embeddings for MLDoc') | |
if not os.path.exists(args.data_dir): | |
os.mkdir(args.data_dir) | |
enc = EncodeLoad(args) | |
print('\nProcessing:') | |
for part in ('train1000', 'dev', 'test'): | |
# for lang in "en" if part == 'train1000' else args.lang: | |
for lang in args.lang: | |
cfname = os.path.join(args.data_dir, 'mldoc.' + part) | |
Token(cfname + '.txt.' + lang, | |
cfname + '.tok.' + lang, | |
lang=lang, | |
romanize=(True if lang == 'el' else False), | |
lower_case=True, gzip=False, | |
verbose=args.verbose, over_write=False) | |
SplitLines(cfname + '.tok.' + lang, | |
cfname + '.split.' + lang, | |
cfname + '.sid.' + lang) | |
BPEfastApply(cfname + '.split.' + lang, | |
cfname + '.split.bpe.' + lang, | |
args.bpe_codes, | |
verbose=args.verbose, over_write=False) | |
EncodeFile(enc, | |
cfname + '.split.bpe.' + lang, | |
cfname + '.split.enc.' + lang, | |
verbose=args.verbose, over_write=False, | |
buffer_size=args.buffer_size) | |
JoinEmbed(cfname + '.split.enc.' + lang, | |
cfname + '.sid.' + lang, | |
cfname + '.enc.' + lang) | |