Spaces:
Sleeping
Sleeping
File size: 2,391 Bytes
dd05f29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import os
import json
import pandas as pd
import argparse
def process_csv(num, input_csv, output_csv, column_name):
# Read the input CSV file
try:
df = pd.read_csv(input_csv)
except Exception as e:
print(f"Error reading {input_csv}: {e}")
return
# Add the target column
df[column_name] = None
# Process each row by using the index to construct the JSON file path
for idx, row in df.iterrows():
json_path = os.path.join(os.path.splitext(input_csv)[0], f"metadata_{idx}_iter_{num}.json")
# Check if the file exists
if not os.path.exists(json_path):
print(f"File not found: {json_path}")
df.at[idx, column_name] = None
continue
# Open and read the JSON file
try:
with open(json_path, 'r', encoding='utf-8') as f:
data = json.load(f)
except Exception as e:
print(f"Error reading {json_path}: {e}")
df.at[idx, column_name] = None
continue
# Extract the value from final_translations_record
final_record = data.get("final_translations_record", [])
if isinstance(final_record, list) and len(final_record) > 0:
value = final_record[0]
else:
value = None
# Write the value into the target column
df.at[idx, column_name] = value
# Save the result to output CSV
try:
df.to_csv(output_csv, index=False)
print(f"Saved successfully: {output_csv}")
except Exception as e:
print(f"Error saving {output_csv}: {e}")
# Example command: python memory2csv.py --num 5 --input_csv valid_en_ja.csv --output_csv eval_en_ja.csv --column_name mpc
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process CSV and extract data from JSON files.')
parser.add_argument('--num', type=int, required=True, help='Iteration number used in JSON filenames')
parser.add_argument('--input_csv', type=str, required=True, help='Path to input CSV file')
parser.add_argument('--output_csv', type=str, required=True, help='Path to save the output CSV file')
parser.add_argument('--column_name', type=str, required=True, help='Column name to store extracted values')
args = parser.parse_args()
process_csv(args.num, args.input_csv, args.output_csv, args.column_name) |