File size: 12,314 Bytes
05d3571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import logging
import re
import typing as tp
from pathlib import Path

from botok.tokenizers import sentencetokenizer as bod_sent_tok
# Indicp NLP
from indicnlp import common as indic_common
from indicnlp import loader as indic_loader
from indicnlp.normalize.indic_normalize import IndicNormalizerFactory
from indicnlp.tokenize import sentence_tokenize as indic_sent_tok
from khmernltk import sentence_tokenize as khm_sent_tok
# pythainlp for Thai
# Seahorse for Indonesian, Thai, Vietnamese
# botok for tibetan
# Spacy for
# various tool-kits
from laonlp.tokenize import sent_tokenize as lao_sent_tok
# --- sentence splitters
# Moses-style
from sentence_splitter import SentenceSplitter

INDIC_NLP_RESOURCES = None  # apparently not needed for splitting and normalization


logger = logging.getLogger("sentence_split")


split_lang_code_map = {
    "ace_Arab" : "ace_Arab",
    "ace_Latn" : "ace_Latn",
    "acm_Arab" : "acm",
    "acq_Arab" : "acq",
    "aeb_Arab" : "aeb",
    "afr_Latn" : "afr",
    "ajp_Arab" : "ajp",
    "aka_Latn" : "aka",
    "amh_Ethi" : "amh",
    "apc_Arab" : "apc",
    "arb_Arab" : "ara",
    "arb_Arab" : "ara_Arab",
    "arb_Latn" : "ara_Latn",
    "ars_Arab" : "ars",
    "ary_Arab" : "ary",
    "arz_Arab" : "arz",
    "asm_Beng" : "asm",
    "ast_Latn" : "ast",
    "awa_Deva" : "awa",
    "ayr_Latn" : "ayr",
    "azb_Arab" : "azb",
    "azj_Latn" : "azj",
    "bak_Cyrl" : "bak",
    "bam_Latn" : "bam",
    "ban_Latn" : "ban",
    "bel_Cyrl" : "bel",
    "bem_Latn" : "bem",
    "ben_Beng" : "ben",
    "bho_Deva" : "bho",
    "bjn_Arab" : "bjn_Arab",
    "bjn_Latn" : "bjn_Latn",
    "bod_Tibt" : "bod",
    "bos_Latn" : "bos",
    "bug_Latn" : "bug",
    "bul_Cyrl" : "bul",
    "cat_Latn" : "cat",
    "ceb_Latn" : "ceb",
    "ces_Latn" : "ces",
    "cjk_Latn" : "cjk",
    "ckb_Arab" : "ckb",
    "crh_Latn" : "crh_Latn",
    "cym_Latn" : "cym",
    "dan_Latn" : "dan",
    "deu_Latn" : "deu",
    "dik_Latn" : "dik",
    "diq_Latn" : "diq",
    "dyu_Latn" : "dyu",
    "dzo_Tibt" : "dzo",
    "ell_Grek" : "ell",
    "eng_Latn" : "eng",
    "epo_Latn" : "epo",
    "est_Latn" : "est",
    "eus_Latn" : "eus",
    "ewe_Latn" : "ewe",
    "fao_Latn" : "fao",
    "pes_Arab" : "fas",
    "fij_Latn" : "fij",
    "fin_Latn" : "fin",
    "fon_Latn" : "fon",
    "fra_Latn" : "fra",
    "fur_Latn" : "fur",
    "fuv_Latn" : "fuv",
    "gla_Latn" : "gla",
    "gle_Latn" : "gle",
    "glg_Latn" : "glg",
    "grn_Latn" : "grn",
    "guj_Gujr" : "guj",
    "hat_Latn" : "hat",
    "hau_Latn" : "hau",
    "heb_Hebr" : "heb",
    "hin_Deva" : "hin",
    "hne_Deva" : "hne",
    "hrv_Latn" : "hrv",
    "hun_Latn" : "hun",
    "hye_Armn" : "hye",
    "ibo_Latn" : "ibo",
    "ilo_Latn" : "ilo",
    "ind_Latn" : "ind",
    "isl_Latn" : "isl",
    "ita_Latn" : "ita",
    "jav_Latn" : "jav",
    "jpn_Jpan" : "jpn",
    "kab_Latn" : "kab",
    "kac_Latn" : "kac",
    "kam_Latn" : "kam",
    "kan_Knda" : "kan",
    "kas_Arab" : "kas_Arab",
    "kas_Deva" : "kas_Deva",
    "kat_Geor" : "kat",
    "knc_Arab" : "kau_Arab",
    "knc_Latn" : "kau_Latn",
    "kaz_Cyrl" : "kaz",
    "kbp_Latn" : "kbp",
    "kea_Latn" : "kea",
    "khm_Khmr" : "khm",
    "kik_Latn" : "kik",
    "kin_Latn" : "kin",
    "kir_Cyrl" : "kir",
    "kmb_Latn" : "kmb",
    "kon_Latn" : "kon",
    "kor_Hang" : "kor",
    "kmr_Latn" : "kur",
    "lao_Laoo" : "lao",
    "lvs_Latn" : "lav",
    "lij_Latn" : "lij",
    "lim_Latn" : "lim",
    "lin_Latn" : "lin",
    "lit_Latn" : "lit",
    "lmo_Latn" : "lmo",
    "ltg_Latn" : "ltg",
    "ltz_Latn" : "ltz",
    "lua_Latn" : "lua",
    "lug_Latn" : "lug",
    "luo_Latn" : "luo",
    "lus_Latn" : "lus",
    "mag_Deva" : "mag",
    "mai_Deva" : "mai",
    "mal_Mlym" : "mal",
    "mar_Deva" : "mar",
    "min_Arab" : "min_Arab",
    "min_Latn" : "min_Latn",
    "mkd_Cyrl" : "mkd",
    "plt_Latn" : "mlg",
    "mlt_Latn" : "mlt",
    "khk_Cyrl" : "mon",
    "mos_Latn" : "mos",
    "mri_Latn" : "mri",
    "zsm_Latn" : "msa",
    "mya_Mymr" : "mya",
    "nld_Latn" : "nld",
    "nno_Latn" : "nno",
    "nob_Latn" : "nob",
    "npi_Deva" : "npi",
    "nso_Latn" : "nso",
    "nus_Latn" : "nus",
    "nya_Latn" : "nya",
    "oci_Latn" : "oci",
    "gaz_Latn" : "orm",
    "ory_Orya" : "ory",
    "pag_Latn" : "pag",
    "pan_Guru" : "pan",
    "pap_Latn" : "pap",
    "pol_Latn" : "pol",
    "por_Latn" : "por",
    "prs_Arab" : "prs",
    "pbt_Arab" : "pus",
    "quy_Latn" : "que",
    "ron_Latn" : "ron",
    "run_Latn" : "run",
    "rus_Cyrl" : "rus",
    "sag_Latn" : "sag",
    "san_Deva" : "san",
    "sat_Olck" : "sat",
    "scn_Latn" : "scn",
    "shn_Mymr" : "shn",
    "sin_Sinh" : "sin",
    "slk_Latn" : "slk",
    "slv_Latn" : "slv",
    "smo_Latn" : "smo",
    "sna_Latn" : "sna",
    "snd_Arab" : "snd",
    "som_Latn" : "som",
    "sot_Latn" : "sot",
    "spa_Latn" : "spa",
    "als_Latn" : "sqi",
    "srd_Latn" : "srd",
    "srp_Cyrl" : "srp_Cyrl",
    "ssw_Latn" : "ssw",
    "sun_Latn" : "sun",
    "swe_Latn" : "swe",
    "swh_Latn" : "swh",
    "szl_Latn" : "szl",
    "tam_Taml" : "tam",
    "tat_Cyrl" : "tat_Cyrl",
    "tel_Telu" : "tel",
    "tgk_Cyrl" : "tgk",
    "tgl_Latn" : "tgl",
    "tha_Thai" : "tha",
    "tir_Ethi" : "tir",
    "taq_Latn" : "tmh_Latn",
    "taq_Tfng" : "tmh_Tfng",
    "ton_Latn" : "ton",
    "tpi_Latn" : "tpi",
    "tsn_Latn" : "tsn",
    "tso_Latn" : "tso",
    "tuk_Latn" : "tuk",
    "tum_Latn" : "tum",
    "tur_Latn" : "tur",
    "twi_Latn" : "twi",
    "tzm_Tfng" : "tzm",
    "uig_Arab" : "uig",
    "ukr_Cyrl" : "ukr",
    "umb_Latn" : "umb",
    "urd_Arab" : "urd",
    "uzn_Latn" : "uzb",
    "vec_Latn" : "vec",
    "vie_Latn" : "vie",
    "war_Latn" : "war",
    "wol_Latn" : "wol",
    "xho_Latn" : "xho",
    "ydd_Hebr" : "yid",
    "yor_Latn" : "yor",
    "yue_Hant" : "yue",
    "zho_Hans" : "zho_Hans",
    "zho_Hant" : "zho_Hant",
    "zul_Latn" : "zul"
}


# ----------------------------------
# Supported tokenization algorithms
# List of supported languages and mapping ISO3 - > ISO2

LANGS_MOSES = {
    "cat": "ca",
    "ces": "cs",
    "dan": "da",
    "nld": "nl",
    "eng": "en",
    "fin": "fi",
    "fra": "fr",
    "deu": "de",
    "ell": "el",
    "hun": "hu",
    "isl": "is",
    "ita": "it",
    "lav": "lv",
    "lit": "lt",
    "nob": "no",
    "pol": "pl",
    "por": "pt",
    "ron": "ro",
    "rus": "ru",
    "slk": "sk",
    "slv": "sl",
    "spa": "es",
    "swe": "sv",
    "tur": "tr",
}

LANGS_LAONLP = {"lao": "lao"}
LANGS_KHMER = {"khm": "khm"}
LANGS_BODNLP = {
    "bod": "bod",
    "dzo": "dzo",
}  # languages with tibetan script

# ----------------------------------------------
LANGS_INDIC = {
    "asm": "as",
    "awa": "hi",
    "ben": "bn",
    "bho": "hi",
    "brx": "bD",
    "gom": "xx",
    "guj": "gu",
    "hin": "hi",
    "hne": "hi",
    "kan": "kn",
    "kas": "hi",
    "kas_Deva": "hi",
    "kok": "kK",
    "mni": "bn",  # our meitei is in bengali script, so swapped it to bengali here
    "mag": "hi",
    "mai": "hi",
    "mal": "ml",
    "mar": "mr",
    "npi": "ne",
    "ory": "or",
    "pan": "pa",
    "san": "sa",
    "snd": "sd",
    "tam": "ta",
    "tel": "te",
    "urd": "ur",
}

# ----------------------------------------------
LANGS_GEEZ = {"amh": "amh", "tir": "tir"}


def split_geez(line: str) -> tp.Iterable[str]:
    """Split Amharic text into sentences."""
    line = line.replace("፡፡", "።")
    # remove "•" if there's already EOS marker before
    line = (
        line.replace("። •", "።")
        .replace("? •", "?")
        .replace("! •", "!")
        .replace(". •", ".")
    )
    for sent in re.findall(r"[^።•!?\!\?\.]+[።•!?।৷\?\!\.]?", line, flags=re.U):
        yield sent


# ----------------------------------------------
LANGS_OLCHIKI = {"san": "san"}


def split_olchiki(line: str) -> tp.Iterable[str]:
    """Split Santali text into sentences."""
    for sent in re.findall(r"[^᱾|᱿!?\!\?]+[᱾|᱿!?\?\!]?", line, flags=re.U):
        yield sent


# test sentence: ᱱᱤᱭᱟᱹ ᱣᱤᱠᱤᱯᱤᱰᱤᱭᱟ ᱫᱚ ᱥᱟᱱᱛᱟᱲᱤ ᱛᱮ ᱚᱞ ᱟᱠᱟᱱᱟ᱾ ᱚᱨᱦᱚᱸ ᱮᱴᱟᱜ ᱯᱟᱹᱨᱥᱤᱛᱮ ᱦᱚᱸ ᱟᱭᱢᱟ ᱣᱤᱠᱤᱯᱤᱰᱤᱭᱟ ᱢᱮᱱᱟᱜᱼᱟ ᱾ ᱱᱚᱸᱰᱮ ᱠᱤᱪᱷᱩ ᱛᱟᱹᱞᱠᱟᱹ ᱮᱢ ᱦᱩᱭᱱᱟ ᱾
# splits three times


# ----------------------------------------------
LANGS_BURMESE = {"mya": "mya", "shn": "shn"}


def split_burmese(line: str) -> tp.Iterable[str]:
    """Split Amharic text into sentences."""
    # remove "•" if there's already EOS marker before
    line = line.replace("။”", "APOS။")
    for sent in re.findall(r"[^။!?\!\?\.]+[။!?।৷\?\!\.]?", line, flags=re.U):
        yield sent.replace("APOS။", "။”")


# ----------------------------------


def get_split_algo(lang: str, split_algo: str) -> tp.Callable[[str], tp.Iterable[str]]:
    if lang in split_lang_code_map:
        lang = split_lang_code_map[lang]

    # get default algorithm if requested
    if split_algo == "default":
        # use best algorithm in function of language
        if lang in LANGS_MOSES:
            split_algo = "moses"
        elif lang in LANGS_INDIC:
            split_algo = "indic"
        elif lang in LANGS_GEEZ:
            split_algo = "geez"
        elif lang in LANGS_KHMER:
            split_algo = "khmer"
        elif lang in LANGS_BURMESE:
            split_algo = "burmese"
        else:
            # use Moses by default (which likely will fall-back to English)
            split_algo = "moses"
        logger.info(f" - default algorithm for {lang} is {split_algo}")

    if split_algo == "none" or lang == "TODO":
        logger.info(" - no sentence splitting")
        return lambda line: [line]

    elif split_algo == "moses":
        if lang in LANGS_MOSES:
            lang = LANGS_MOSES[lang]
            logger.info(f" - Moses sentence splitter: using rules for '{lang}'")
        else:
            lang = "en"
            logger.info(
                f" - Moses sentence splitter for {lang}: falling back to {lang} rules"
            )
        splitter = SentenceSplitter(language=lang)
        # non_breaking_prefix_file=non_breaking_prefix_file
        return splitter.split

    elif split_algo == "indic":
        # initialize toolkit (apparently not needed for sentence segmentation)
        if INDIC_NLP_RESOURCES:
            logger.info(" - Initialize Indic NLP toolkit")
            indic_common.set_resources_path(INDIC_NLP_RESOURCES)
            indic_loader.load()
        if lang in LANGS_INDIC:
            lang = LANGS_INDIC[lang]
            logger.info(f" - Indic sentence splitter: using rules for '{lang}'")
        else:
            lang = "hi"
            logger.info(
                f" - Indic sentence splitter for {lang}: falling back to {lang} rules"
            )

        # setup normalizer
        factory = IndicNormalizerFactory()
        indic_normalizer = factory.get_normalizer(lang)

        def split_indic(line: str) -> tp.Iterable[str]:
            """Split Indian text into sentences using Indic NLP tool."""
            line = indic_normalizer.normalize(line)
            for sent in indic_sent_tok.sentence_split(line, lang=lang):
                yield sent

        return split_indic

    elif split_algo == "laonlp":
        logger.info(f" - LaoNLP sentence splitter applied to '{lang}'")
        return lao_sent_tok

    elif split_algo == "khmer":
        logger.info(f" - Khmer NLTK sentence splitter applied to '{lang}'")
        return khm_sent_tok

    elif split_algo == "bodnlp":
        logger.info(f" - Tibetan NLTK sentence splitter applied to '{lang}'")
        return bod_sent_tok

    elif split_algo == "geez":
        logger.info(f" - Ge'ez rule-based sentence splitter applied to '{lang}'")
        return split_geez

    elif split_algo == "burmese":
        logger.info(f" - Burmese rule-based sentence splitter applied to '{lang}'")
        return split_burmese

    else:
        logger.error(f"Unknown splitting algorithm {split_algo}")

    return None