Spaces:
Sleeping
Sleeping
File size: 2,817 Bytes
2aebc50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### You can add new special tokens to pre-trained sentencepiece model\n",
"#### Run this code in google/sentencepiece/python/src/sentencepiece"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load pre-trained sentencepiece model\n",
"Pre-trained model is needed"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"371391"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import sentencepiece_model_pb2 as model\n",
"m = model.ModelProto()\n",
"m.ParseFromString(open(\"old.model\", \"rb\").read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load tokens want to add\n",
"Prepare the list of new tokens want to add"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['[UNK]',\n",
" '[PAD]',\n",
" '[CLS]',\n",
" '[SEP]',\n",
" '[MASK]',\n",
" '[EOS]',\n",
" '[DOMAIN]',\n",
" '[SLOT]',\n",
" '[ACTION]']"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"special_tokens = open(\"special_tokens.txt\", \"r\").read().split(\"\\n\")\n",
"special_tokens"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Add new tokens to sentencepiece model"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"for token in special_tokens:\n",
" new_token = model.ModelProto().SentencePiece()\n",
" new_token.piece = token\n",
" new_token.score = 0\n",
" m.pieces.append(new_token)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Save new sentencepiece model\n",
"Load the new sentencepiece model to your NLP system"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"with open('new.model', 'wb') as f:\n",
" f.write(m.SerializeToString())"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|