File size: 13,628 Bytes
05d3571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#!/usr/bin/python
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER  Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
#


import os
import copy
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data_utils
import numpy as np
import faiss


################################################

def LoadDataNLI(fn1, fn2, fn_lbl,
                dim=1024, bsize=32,
                fraction=1.0,
                shuffle=False, quiet=False):
    x = np.fromfile(fn1, dtype=np.float32, count=-1)
    x.resize(x.shape[0] // dim, dim)
    faiss.normalize_L2(x)

    y = np.fromfile(fn2, dtype=np.float32, count=-1)
    y.resize(y.shape[0] // dim, dim)
    faiss.normalize_L2(y)

    lbl = np.loadtxt(fn_lbl, dtype=np.int32)
    lbl.reshape(lbl.shape[0], 1)

    if not quiet:
        print(' - read {:d}x{:d} elements in {:s}'.format(x.shape[0], x.shape[1], fn1))
        print(' - read {:d}x{:d} elements in {:s}'.format(y.shape[0], y.shape[1], fn2))
        print(' - read {:d} labels [{:d},{:d}] in {:s}'
              .format(lbl.shape[0], lbl.min(), lbl.max(), fn_lbl))

    if fraction < 1.0:
        N = int(x.shape[0] * fraction)
        if not quiet:
            print(' - using only the first {:d} examples'.format(N))
        x = x[:N][:]
        y = y[:N][:]
        lbl = lbl[:N][:]

    if not quiet:
        print(' - combine premises and hyps')
    nli = np.concatenate((x, y, np.absolute(x - y), np.multiply(x, y)), axis=1)

    D = data_utils.TensorDataset(torch.from_numpy(nli), torch.from_numpy(lbl))
    loader = data_utils.DataLoader(D, batch_size=bsize, shuffle=shuffle)
    return loader


################################################

class Net(nn.Module):
    def __init__(self, fname='',
                 idim=4*1024, odim=2, nhid=None,
                 dropout=0.0, gpu=0, activation='TANH'):
        super(Net, self).__init__()
        self.gpu = gpu
        if os.path.isfile(fname):
            print(' - loading mlp from %s'.format(fname))
            loaded = torch.load(fname)
            self.mlp = loaded.mlp
        else:
            modules = []
            print(' - mlp {:d}'.format(idim), end='')
            if len(nhid) > 0:
                if dropout > 0:
                    modules.append(nn.Dropout(p=dropout))
                nprev = idim
                for nh in nhid:
                    if nh > 0:
                        modules.append(nn.Linear(nprev, nh))
                        nprev = nh
                        if activation == 'TANH':
                            modules.append(nn.Tanh())
                            print('-{:d}t'.format(nh), end='')
                        elif activation == 'RELU':
                            modules.append(nn.ReLU())
                            print('-{:d}r'.format(nh), end='')
                        else:
                            raise Exception('Unrecognised activation {activation}')
                        if dropout > 0:
                            modules.append(nn.Dropout(p=dropout))
                modules.append(nn.Linear(nprev, odim))
                print('-{:d}, dropout={:.1f}'.format(odim, dropout))
            else:
                modules.append(nn.Linear(idim, odim))
                print(' - mlp {:d}-{:d}'.format(idim, odim))
            self.mlp = nn.Sequential(*modules)

        if self.gpu >= 0:
            self.mlp = self.mlp.cuda()

    def forward(self, x):
        return self.mlp(x)

    def TestCorpus(self, dset, name=' Dev', nlbl=3, out_fname=None):
        correct = 0
        total = 0
        self.mlp.train(mode=False)
        corr = np.zeros(nlbl, dtype=np.int32)
        if out_fname:
            fp = open(out_fname, 'w')
            fp.write('# outputs target_class predicted_class\n')
        for data in dset:
            X, Y = data
            Y = Y.long()
            if self.gpu >= 0:
                X = X.cuda()
                Y = Y.cuda()
            outputs = self.mlp(X)
            _, predicted = torch.max(outputs.data, 1)
            total += Y.size(0)
            correct += (predicted == Y).int().sum()
            for i in range(nlbl):
                corr[i] += (predicted == i).int().sum()
            if out_fname:
                for b in range(outputs.shape[0]):
                    for i in range(nlbl):
                        fp.write('{:f} '.format(outputs[b][i]))
                    fp.write('{:d} {:d}\n'
                             .format(predicted[b], Y[b]))

        print(' | {:4s}: {:5.2f}%'
              .format(name, 100.0 * correct.float() / total), end='')
        # print(' | loss {:6.4f}'.format(loss/total), end='')
        print(' | classes:', end='')
        for i in range(nlbl):
            print(' {:5.2f}'.format(100.0 * corr[i] / total), end='')

        if out_fname:
            fp.close()

        return correct, total


################################################

parser = argparse.ArgumentParser(
           formatter_class=argparse.RawDescriptionHelpFormatter,
           description='Classifier for NLI')

# Data
parser.add_argument(
    '--base-dir', '-b', type=str, required=True, metavar='PATH',
    help='Directory with all the data files)')
parser.add_argument(
    '--load', '-l', type=str, required=False, metavar='PATH', default='',
    help='Load network from file before training or for testing')
parser.add_argument(
    '--save', '-s', type=str, required=False, metavar='PATH', default='',
    help='File in which to save best network')
parser.add_argument(
    '--train', '-t', type=str, required=True, metavar='STR',
    help='Name of training corpus')
parser.add_argument(
    '--train-labels', '-T', type=str, required=True, metavar='STR',
    help='Name of training corpus (labels)')
parser.add_argument(
    '--dev', '-d', type=str, required=True, metavar='STR',
    help='Name of development corpus')
parser.add_argument(
    '--dev-labels', '-D', type=str, required=True, metavar='STR',
    help='Name of development corpus (labels)')
parser.add_argument(
    '--test', '-e', type=str, default=None,
    help='Name of test corpus without language extension')
parser.add_argument(
    '--test-labels', '-E', type=str, default=None,
    help='Name of test corpus without language extension (labels)')
parser.add_argument(
    '--lang', '-L', nargs='+', default=None,
    help='List of languages to test on')
parser.add_argument(
    '--cross-lingual', '-x', action='store_true',
    help='Also test on premise and hypothesis in different languages)')
parser.add_argument(
    '--parts', '-p', type=str, nargs='+', default=['prem', 'hyp'],
    help='Name of the two input parts to compare')
parser.add_argument(
    '--fraction', '-f', type=float, default=1.0,
    help='Fraction of training examples to use (from the beginning)')
parser.add_argument(
    '--save-outputs', type=str, default=None,
    help='File name to save classifier outputs ("l1-l2.txt" will be added)')

# network definition
parser.add_argument(
    '--dim', '-m', type=int, default=1024,
    help='dimension of sentence embeddings')
parser.add_argument(
    '--nhid', '-n', type=int, default=0, nargs='+',
    help='List of hidden layer(s) dimensions')
parser.add_argument(
    '--dropout', '-o', type=float, default=0.0, metavar='FLOAT',
    help='Value  of dropout')
parser.add_argument(
    '--nepoch', '-N', type=int, default=100, metavar='INT',
    help='Number of epochs')
parser.add_argument(
    '--bsize', '-B', type=int, default=128, metavar='INT',
    help='Batch size')
parser.add_argument(
    '--seed', '-S', type=int, default=123456789, metavar='INT',
    help='Initial random seed')
parser.add_argument(
    '--lr', type=float, default=0.001, metavar='FLOAT',
    help='Learning rate')
parser.add_argument(
    '--activation', '-a', type=str, default='TANH', metavar='STR',
    help='NonLinearity to use in hidden layers')
parser.add_argument(
    '--gpu', '-g', type=int, default=-1, metavar='INT',
    help='GPU id (-1 for CPU)')
args = parser.parse_args()

train_loader = LoadDataNLI(os.path.join(args.base_dir, args.train % args.parts[0]),
                           os.path.join(args.base_dir, args.train % args.parts[1]),
                           os.path.join(args.base_dir, args.train_labels),
                           dim=args.dim, bsize=args.bsize, shuffle=True, fraction=args.fraction)

dev_loader = LoadDataNLI(os.path.join(args.base_dir, args.dev % args.parts[0]),
                         os.path.join(args.base_dir, args.dev % args.parts[1]),
                         os.path.join(args.base_dir, args.dev_labels),
                         dim=args.dim, bsize=args.bsize, shuffle=False)

# set GPU and random seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.gpu < 0:
    print(' - running on cpu')
else:
    print(' - running on gpu {:d}'.format(args.gpu))
    torch.cuda.set_device(args.gpu)
    torch.cuda.manual_seed(args.seed)
print(' - setting seed to {:d}'.format(args.seed))
print(' - lrate is {:f} and bsize {:d}'.format(args.lr, args.bsize))

# create network
net = Net(fname=args.load,
          idim=4*args.dim, odim=3, nhid=args.nhid,
          dropout=args.dropout, gpu=args.gpu,
          activation=args.activation)
if args.gpu >= 0:
    criterion = nn.CrossEntropyLoss().cuda()
else:
    criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(net.parameters(), lr=args.lr)

corr_best = 0
# loop multiple times over the dataset
for epoch in range(args.nepoch):

    loss_epoch = 0.0
    print('Ep {:4d}'.format(epoch), end='')
    # for inputs, labels in train_loader:
    for i, data in enumerate(train_loader, 0):
        # get the inputs
        inputs, labels = data
        labels = labels.long()
        if args.gpu >= 0:
            inputs = inputs.cuda()
            labels = labels.cuda()

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        net.train(mode=True)
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        loss_epoch += loss.item()

    print(' | loss {:e}'.format(loss_epoch), end='')

    corr, nbex = net.TestCorpus(dev_loader, 'Dev')
    if corr >= corr_best:
        print(' | saved')
        corr_best = corr
        net_best = copy.deepcopy(net)
    else:
        print('')


if 'net_best' in globals():
    if args.save != '':
        torch.save(net_best.cpu(), args.save)
    print('Best Dev: {:d} = {:5.2f}%'
          .format(corr_best, 100.0 * corr_best.float() / nbex))

    if args.gpu >= 0:
        net_best = net_best.cuda()

# test on (several) languages
if args.test is None:
    os.exit()

print('Testing on {}'.format(args.test))
if not args.cross_lingual:
    for l in args.lang:
        test_loader = LoadDataNLI(os.path.join(args.base_dir, args.test % args.parts[0] + '.' + l),
                                  os.path.join(args.base_dir, args.test % args.parts[1] + '.' + l),
                                  os.path.join(args.base_dir, args.test_labels + '.' + l),
                                  dim=args.dim, bsize=args.bsize, shuffle=False, quiet=True)
        print('Ep best | Eval Test lang {:s}'.format(l), end='')
        ofname = args.save_outputs + '.{:s}-{:s}'.format(l, l) + '.txt' if args.save_outputs else None
        net_best.TestCorpus(test_loader, 'Test', out_fname=ofname)
        print('')
else:  # cross-lingual
    err = np.empty((len(args.lang), len(args.lang)), dtype=np.float32)
    i1 = 0
    for l1 in args.lang:
        i2 = 0
        for l2 in args.lang:
            test_loader = LoadDataNLI(os.path.join(args.base_dir, args.test % args.parts[0] + '.' + l1),
                                      os.path.join(args.base_dir, args.test % args.parts[1] + '.' + l2),
                                      os.path.join(args.base_dir, args.test_labels + '.' + l2),
                                      dim=args.dim, bsize=args.bsize, shuffle=False, quiet=True)
            print('Ep best | Eval Test {:s}-{:s}'.format(l1, l2), end='')
            ofname = args.save_outputs + '.{:s}-{:s}'.format(l1, l2) + '.txt' if args.save_outputs else None
            p, n = net_best.TestCorpus(test_loader, 'Test',
                                       out_fname=ofname)
            err[i1, i2] = 100.0 * float(p) / n
            i2 += 1
            print('')
        i1 += 1

    print('\nAccuracy matrix:')
    print('      ', end='')
    for i2 in range(err.shape[1]):
        print('  {:4s} '.format(args.lang[i2]), end='')

    print('  avg')
    for i1 in range(err.shape[0]):
        print('{:4s}'.format(args.lang[i1]), end='')
        for i2 in range(err.shape[1]):
            print('  {:5.2f}'.format(err[i1, i2]), end='')
        print('   {:5.2f}'.format(np.average(err[i1, :])))
    print('avg ', end='')
    for i2 in range(err.shape[1]):
        print('  {:5.2f}'.format(np.average(err[:, i2])), end='')
    print('  {:5.2f}'.format(np.average(err)))

    if err.shape[0] == err.shape[1]:
        s = 0
        # TODO: we assume the first lang is English
        for i1 in range(1, err.shape[0]):
            s += err[i1, i1]
        print('xnli-xx: {:5.2f}'.format(s/(err.shape[0]-1)))