Spaces:
Sleeping
Sleeping
File size: 13,628 Bytes
05d3571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
#!/usr/bin/python
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
#
import os
import copy
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data_utils
import numpy as np
import faiss
################################################
def LoadDataNLI(fn1, fn2, fn_lbl,
dim=1024, bsize=32,
fraction=1.0,
shuffle=False, quiet=False):
x = np.fromfile(fn1, dtype=np.float32, count=-1)
x.resize(x.shape[0] // dim, dim)
faiss.normalize_L2(x)
y = np.fromfile(fn2, dtype=np.float32, count=-1)
y.resize(y.shape[0] // dim, dim)
faiss.normalize_L2(y)
lbl = np.loadtxt(fn_lbl, dtype=np.int32)
lbl.reshape(lbl.shape[0], 1)
if not quiet:
print(' - read {:d}x{:d} elements in {:s}'.format(x.shape[0], x.shape[1], fn1))
print(' - read {:d}x{:d} elements in {:s}'.format(y.shape[0], y.shape[1], fn2))
print(' - read {:d} labels [{:d},{:d}] in {:s}'
.format(lbl.shape[0], lbl.min(), lbl.max(), fn_lbl))
if fraction < 1.0:
N = int(x.shape[0] * fraction)
if not quiet:
print(' - using only the first {:d} examples'.format(N))
x = x[:N][:]
y = y[:N][:]
lbl = lbl[:N][:]
if not quiet:
print(' - combine premises and hyps')
nli = np.concatenate((x, y, np.absolute(x - y), np.multiply(x, y)), axis=1)
D = data_utils.TensorDataset(torch.from_numpy(nli), torch.from_numpy(lbl))
loader = data_utils.DataLoader(D, batch_size=bsize, shuffle=shuffle)
return loader
################################################
class Net(nn.Module):
def __init__(self, fname='',
idim=4*1024, odim=2, nhid=None,
dropout=0.0, gpu=0, activation='TANH'):
super(Net, self).__init__()
self.gpu = gpu
if os.path.isfile(fname):
print(' - loading mlp from %s'.format(fname))
loaded = torch.load(fname)
self.mlp = loaded.mlp
else:
modules = []
print(' - mlp {:d}'.format(idim), end='')
if len(nhid) > 0:
if dropout > 0:
modules.append(nn.Dropout(p=dropout))
nprev = idim
for nh in nhid:
if nh > 0:
modules.append(nn.Linear(nprev, nh))
nprev = nh
if activation == 'TANH':
modules.append(nn.Tanh())
print('-{:d}t'.format(nh), end='')
elif activation == 'RELU':
modules.append(nn.ReLU())
print('-{:d}r'.format(nh), end='')
else:
raise Exception('Unrecognised activation {activation}')
if dropout > 0:
modules.append(nn.Dropout(p=dropout))
modules.append(nn.Linear(nprev, odim))
print('-{:d}, dropout={:.1f}'.format(odim, dropout))
else:
modules.append(nn.Linear(idim, odim))
print(' - mlp {:d}-{:d}'.format(idim, odim))
self.mlp = nn.Sequential(*modules)
if self.gpu >= 0:
self.mlp = self.mlp.cuda()
def forward(self, x):
return self.mlp(x)
def TestCorpus(self, dset, name=' Dev', nlbl=3, out_fname=None):
correct = 0
total = 0
self.mlp.train(mode=False)
corr = np.zeros(nlbl, dtype=np.int32)
if out_fname:
fp = open(out_fname, 'w')
fp.write('# outputs target_class predicted_class\n')
for data in dset:
X, Y = data
Y = Y.long()
if self.gpu >= 0:
X = X.cuda()
Y = Y.cuda()
outputs = self.mlp(X)
_, predicted = torch.max(outputs.data, 1)
total += Y.size(0)
correct += (predicted == Y).int().sum()
for i in range(nlbl):
corr[i] += (predicted == i).int().sum()
if out_fname:
for b in range(outputs.shape[0]):
for i in range(nlbl):
fp.write('{:f} '.format(outputs[b][i]))
fp.write('{:d} {:d}\n'
.format(predicted[b], Y[b]))
print(' | {:4s}: {:5.2f}%'
.format(name, 100.0 * correct.float() / total), end='')
# print(' | loss {:6.4f}'.format(loss/total), end='')
print(' | classes:', end='')
for i in range(nlbl):
print(' {:5.2f}'.format(100.0 * corr[i] / total), end='')
if out_fname:
fp.close()
return correct, total
################################################
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description='Classifier for NLI')
# Data
parser.add_argument(
'--base-dir', '-b', type=str, required=True, metavar='PATH',
help='Directory with all the data files)')
parser.add_argument(
'--load', '-l', type=str, required=False, metavar='PATH', default='',
help='Load network from file before training or for testing')
parser.add_argument(
'--save', '-s', type=str, required=False, metavar='PATH', default='',
help='File in which to save best network')
parser.add_argument(
'--train', '-t', type=str, required=True, metavar='STR',
help='Name of training corpus')
parser.add_argument(
'--train-labels', '-T', type=str, required=True, metavar='STR',
help='Name of training corpus (labels)')
parser.add_argument(
'--dev', '-d', type=str, required=True, metavar='STR',
help='Name of development corpus')
parser.add_argument(
'--dev-labels', '-D', type=str, required=True, metavar='STR',
help='Name of development corpus (labels)')
parser.add_argument(
'--test', '-e', type=str, default=None,
help='Name of test corpus without language extension')
parser.add_argument(
'--test-labels', '-E', type=str, default=None,
help='Name of test corpus without language extension (labels)')
parser.add_argument(
'--lang', '-L', nargs='+', default=None,
help='List of languages to test on')
parser.add_argument(
'--cross-lingual', '-x', action='store_true',
help='Also test on premise and hypothesis in different languages)')
parser.add_argument(
'--parts', '-p', type=str, nargs='+', default=['prem', 'hyp'],
help='Name of the two input parts to compare')
parser.add_argument(
'--fraction', '-f', type=float, default=1.0,
help='Fraction of training examples to use (from the beginning)')
parser.add_argument(
'--save-outputs', type=str, default=None,
help='File name to save classifier outputs ("l1-l2.txt" will be added)')
# network definition
parser.add_argument(
'--dim', '-m', type=int, default=1024,
help='dimension of sentence embeddings')
parser.add_argument(
'--nhid', '-n', type=int, default=0, nargs='+',
help='List of hidden layer(s) dimensions')
parser.add_argument(
'--dropout', '-o', type=float, default=0.0, metavar='FLOAT',
help='Value of dropout')
parser.add_argument(
'--nepoch', '-N', type=int, default=100, metavar='INT',
help='Number of epochs')
parser.add_argument(
'--bsize', '-B', type=int, default=128, metavar='INT',
help='Batch size')
parser.add_argument(
'--seed', '-S', type=int, default=123456789, metavar='INT',
help='Initial random seed')
parser.add_argument(
'--lr', type=float, default=0.001, metavar='FLOAT',
help='Learning rate')
parser.add_argument(
'--activation', '-a', type=str, default='TANH', metavar='STR',
help='NonLinearity to use in hidden layers')
parser.add_argument(
'--gpu', '-g', type=int, default=-1, metavar='INT',
help='GPU id (-1 for CPU)')
args = parser.parse_args()
train_loader = LoadDataNLI(os.path.join(args.base_dir, args.train % args.parts[0]),
os.path.join(args.base_dir, args.train % args.parts[1]),
os.path.join(args.base_dir, args.train_labels),
dim=args.dim, bsize=args.bsize, shuffle=True, fraction=args.fraction)
dev_loader = LoadDataNLI(os.path.join(args.base_dir, args.dev % args.parts[0]),
os.path.join(args.base_dir, args.dev % args.parts[1]),
os.path.join(args.base_dir, args.dev_labels),
dim=args.dim, bsize=args.bsize, shuffle=False)
# set GPU and random seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.gpu < 0:
print(' - running on cpu')
else:
print(' - running on gpu {:d}'.format(args.gpu))
torch.cuda.set_device(args.gpu)
torch.cuda.manual_seed(args.seed)
print(' - setting seed to {:d}'.format(args.seed))
print(' - lrate is {:f} and bsize {:d}'.format(args.lr, args.bsize))
# create network
net = Net(fname=args.load,
idim=4*args.dim, odim=3, nhid=args.nhid,
dropout=args.dropout, gpu=args.gpu,
activation=args.activation)
if args.gpu >= 0:
criterion = nn.CrossEntropyLoss().cuda()
else:
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=args.lr)
corr_best = 0
# loop multiple times over the dataset
for epoch in range(args.nepoch):
loss_epoch = 0.0
print('Ep {:4d}'.format(epoch), end='')
# for inputs, labels in train_loader:
for i, data in enumerate(train_loader, 0):
# get the inputs
inputs, labels = data
labels = labels.long()
if args.gpu >= 0:
inputs = inputs.cuda()
labels = labels.cuda()
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
net.train(mode=True)
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
loss_epoch += loss.item()
print(' | loss {:e}'.format(loss_epoch), end='')
corr, nbex = net.TestCorpus(dev_loader, 'Dev')
if corr >= corr_best:
print(' | saved')
corr_best = corr
net_best = copy.deepcopy(net)
else:
print('')
if 'net_best' in globals():
if args.save != '':
torch.save(net_best.cpu(), args.save)
print('Best Dev: {:d} = {:5.2f}%'
.format(corr_best, 100.0 * corr_best.float() / nbex))
if args.gpu >= 0:
net_best = net_best.cuda()
# test on (several) languages
if args.test is None:
os.exit()
print('Testing on {}'.format(args.test))
if not args.cross_lingual:
for l in args.lang:
test_loader = LoadDataNLI(os.path.join(args.base_dir, args.test % args.parts[0] + '.' + l),
os.path.join(args.base_dir, args.test % args.parts[1] + '.' + l),
os.path.join(args.base_dir, args.test_labels + '.' + l),
dim=args.dim, bsize=args.bsize, shuffle=False, quiet=True)
print('Ep best | Eval Test lang {:s}'.format(l), end='')
ofname = args.save_outputs + '.{:s}-{:s}'.format(l, l) + '.txt' if args.save_outputs else None
net_best.TestCorpus(test_loader, 'Test', out_fname=ofname)
print('')
else: # cross-lingual
err = np.empty((len(args.lang), len(args.lang)), dtype=np.float32)
i1 = 0
for l1 in args.lang:
i2 = 0
for l2 in args.lang:
test_loader = LoadDataNLI(os.path.join(args.base_dir, args.test % args.parts[0] + '.' + l1),
os.path.join(args.base_dir, args.test % args.parts[1] + '.' + l2),
os.path.join(args.base_dir, args.test_labels + '.' + l2),
dim=args.dim, bsize=args.bsize, shuffle=False, quiet=True)
print('Ep best | Eval Test {:s}-{:s}'.format(l1, l2), end='')
ofname = args.save_outputs + '.{:s}-{:s}'.format(l1, l2) + '.txt' if args.save_outputs else None
p, n = net_best.TestCorpus(test_loader, 'Test',
out_fname=ofname)
err[i1, i2] = 100.0 * float(p) / n
i2 += 1
print('')
i1 += 1
print('\nAccuracy matrix:')
print(' ', end='')
for i2 in range(err.shape[1]):
print(' {:4s} '.format(args.lang[i2]), end='')
print(' avg')
for i1 in range(err.shape[0]):
print('{:4s}'.format(args.lang[i1]), end='')
for i2 in range(err.shape[1]):
print(' {:5.2f}'.format(err[i1, i2]), end='')
print(' {:5.2f}'.format(np.average(err[i1, :])))
print('avg ', end='')
for i2 in range(err.shape[1]):
print(' {:5.2f}'.format(np.average(err[:, i2])), end='')
print(' {:5.2f}'.format(np.average(err)))
if err.shape[0] == err.shape[1]:
s = 0
# TODO: we assume the first lang is English
for i1 in range(1, err.shape[0]):
s += err[i1, i1]
print('xnli-xx: {:5.2f}'.format(s/(err.shape[0]-1)))
|