File size: 10,777 Bytes
05d3571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
#!/usr/bin/python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER  Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
# Tool to calculate to embed a text file
# The functions can be also imported into another Python code


import argparse
import logging
import os
import re
import sys
import tempfile
import time
from collections import namedtuple
from pathlib import Path
from subprocess import run
from typing import Optional, Union

assert os.environ.get("LASER"), "Please set the environment variable LASER"
LASER = os.environ["LASER"]
sys.path.append(LASER)

import numpy as np
from lib.text_processing import BPEfastApply, SPMApply, Token
from laser_encoders.models import SentenceEncoder

SPACE_NORMALIZER = re.compile(r"\s+")
Batch = namedtuple("Batch", "srcs tokens lengths")

logging.basicConfig(
    stream=sys.stdout,
    level=logging.INFO,
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
)
logger = logging.getLogger("embed")


def buffered_read(fp, buffer_size):
    buffer = []
    for src_str in fp:
        buffer.append(src_str.strip())
        if len(buffer) >= buffer_size:
            yield buffer
            buffer = []

    if len(buffer) > 0:
        yield buffer


class HuggingFaceEncoder:
    def __init__(self, encoder_name: str, verbose=False):
        from sentence_transformers import SentenceTransformer

        encoder = f"sentence-transformers/{encoder_name}"
        if verbose:
            logger.info(f"loading HuggingFace encoder: {encoder}")
        self.encoder = SentenceTransformer(encoder)

    def encode_sentences(self, sentences):
        return self.encoder.encode(sentences)


def load_model(
    encoder: str,
    spm_model: str,
    bpe_codes: str,
    hugging_face=False,
    verbose=False,
    **encoder_kwargs,
) -> Union[SentenceEncoder, HuggingFaceEncoder]:
    if hugging_face:
        return HuggingFaceEncoder(encoder, verbose=verbose)
    if spm_model:
        spm_vocab = str(Path(spm_model).with_suffix(".cvocab"))
        if verbose:
            logger.info(f"spm_model: {spm_model}")
            logger.info(f"spm_cvocab: {spm_vocab}")
    else:
        spm_vocab = None
    return SentenceEncoder(
        encoder, spm_vocab=spm_vocab, verbose=verbose, **encoder_kwargs
    )


def EncodeLoad(args):
    args.buffer_size = max(args.buffer_size, 1)
    assert (
        not args.max_sentences or args.max_sentences <= args.buffer_size
    ), "--max-sentences/--batch-size cannot be larger than --buffer-size"

    print(" - loading encoder", args.encoder)
    return SentenceEncoder(
        args.encoder,
        max_sentences=args.max_sentences,
        max_tokens=args.max_tokens,
        cpu=args.cpu,
        verbose=args.verbose,
    )


def EncodeTime(t):
    t = int(time.time() - t)
    if t < 1000:
        return "{:d}s".format(t)
    else:
        return "{:d}m{:d}s".format(t // 60, t % 60)


# Encode sentences (existing file pointers)
def EncodeFilep(
    encoder, inp_file, out_file, buffer_size=10000, fp16=False, verbose=False
):
    n = 0
    t = time.time()
    for sentences in buffered_read(inp_file, buffer_size):
        encoded = encoder.encode_sentences(sentences)
        if fp16:
            encoded = encoded.astype(np.float16)
        encoded.tofile(out_file)
        n += len(sentences)
        if verbose and n % 10000 == 0:
            logger.info("encoded {:d} sentences".format(n))
    if verbose:
        logger.info(f"encoded {n} sentences in {EncodeTime(t)}")


# Encode sentences (file names)
def EncodeFile(
    encoder,
    inp_fname,
    out_fname,
    buffer_size=10000,
    fp16=False,
    verbose=False,
    over_write=False,
    inp_encoding="utf-8",
):
    # TODO :handle over write
    if not os.path.isfile(out_fname):
        if verbose:
            logger.info(
                "encoding {} to {}".format(
                    inp_fname if len(inp_fname) > 0 else "stdin",
                    out_fname,
                )
            )
        fin = (
            open(inp_fname, "r", encoding=inp_encoding, errors="surrogateescape")
            if len(inp_fname) > 0
            else sys.stdin
        )
        fout = open(out_fname, mode="wb")
        EncodeFilep(
            encoder, fin, fout, buffer_size=buffer_size, fp16=fp16, verbose=verbose
        )
        fin.close()
        fout.close()
    elif not over_write and verbose:
        logger.info("encoder: {} exists already".format(os.path.basename(out_fname)))


# Load existing embeddings
def EmbedLoad(fname, dim=1024, verbose=False, fp16=False):
    x = np.fromfile(fname, dtype=(np.float16 if fp16 else np.float32), count=-1)
    x.resize(x.shape[0] // dim, dim)
    if verbose:
        print(" - Embeddings: {:s}, {:d}x{:d}".format(fname, x.shape[0], dim))
    return x


# Get memory mapped embeddings
def EmbedMmap(fname, dim=1024, dtype=np.float32, verbose=False):
    nbex = int(os.path.getsize(fname) / dim / np.dtype(dtype).itemsize)
    E = np.memmap(fname, mode="r", dtype=dtype, shape=(nbex, dim))
    if verbose:
        print(" - embeddings on disk: {:s} {:d} x {:d}".format(fname, nbex, dim))
    return E


def embed_sentences(
    ifname: str,
    output: str,
    encoder: Union[SentenceEncoder, HuggingFaceEncoder] = None,
    encoder_path: str = None,
    hugging_face=False,
    token_lang: Optional[str] = "--",
    bpe_codes: Optional[str] = None,
    spm_lang: Optional[str] = "en",
    spm_model: Optional[str] = None,
    verbose: bool = False,
    buffer_size: int = 10000,
    max_tokens: int = 12000,
    max_sentences: Optional[int] = None,
    cpu: bool = False,
    fp16: bool = False,
    sort_kind: str = "quicksort",
):
    assert encoder or encoder_path, "Provide initialised encoder or encoder_path"
    buffer_size = max(buffer_size, 1)
    assert (
        not max_sentences or max_sentences <= buffer_size
    ), "--max-sentences/--batch-size cannot be larger than --buffer-size"

    assert not (bpe_codes and spm_model), "Cannot specify both spm and bpe"

    if encoder_path:
        encoder = load_model(
            encoder_path,
            spm_model,
            bpe_codes,
            verbose=verbose,
            hugging_face=hugging_face,
            max_sentences=max_sentences,
            max_tokens=max_tokens,
            sort_kind=sort_kind,
            cpu=cpu,
        )
    if not ifname:
        ifname = ""  # default to stdin
    with tempfile.TemporaryDirectory() as tmpdir:
        if token_lang != "--":
            tok_fname = os.path.join(tmpdir, "tok")
            Token(
                ifname,
                tok_fname,
                lang=token_lang,
                romanize=True if token_lang == "el" else False,
                lower_case=True,
                gzip=False,
                verbose=verbose,
                over_write=False,
            )
            ifname = tok_fname

        if bpe_codes:
            if ifname == "":  # stdin
                ifname = os.path.join(tmpdir, "no_tok")
                run(f"cat > {ifname}", shell=True)
            bpe_fname = os.path.join(tmpdir, "bpe")
            BPEfastApply(
                ifname, bpe_fname, bpe_codes, verbose=verbose, over_write=False
            )
            ifname = bpe_fname

        if spm_model:
            spm_fname = os.path.join(tmpdir, "spm")
            SPMApply(
                ifname,
                spm_fname,
                spm_model,
                lang=spm_lang,
                lower_case=True,
                verbose=verbose,
                over_write=False,
            )
            ifname = spm_fname

        EncodeFile(
            encoder,
            ifname,
            output,
            verbose=verbose,
            over_write=False,
            buffer_size=buffer_size,
            fp16=fp16,
        )


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="LASER: Embed sentences")
    parser.add_argument(
        "-i",
        "--input",
        type=str,
        default=None,
        help="Input text file",
    )
    parser.add_argument("--encoder", type=str, required=True, help="encoder to be used")
    parser.add_argument(
        "--token-lang",
        type=str,
        default="--",
        help="Perform tokenization with given language ('--' for no tokenization)",
    )
    parser.add_argument(
        "--bpe-codes", type=str, default=None, help="Apply BPE using specified codes"
    )
    parser.add_argument(
        "--spm-lang", type=str, default="en", help="Apply SPM using specified language"
    )
    parser.add_argument(
        "--spm-model", type=str, default=None, help="Apply SPM using specified model"
    )
    parser.add_argument("-v", "--verbose", action="store_true", help="Detailed output")

    parser.add_argument(
        "-o", "--output", required=True, help="Output sentence embeddings"
    )
    parser.add_argument(
        "--buffer-size", type=int, default=10000, help="Buffer size (sentences)"
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=12000,
        help="Maximum number of tokens to process in a batch",
    )
    parser.add_argument(
        "--max-sentences",
        type=int,
        default=None,
        help="Maximum number of sentences to process in a batch",
    )
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Store embedding matrices in fp16 instead of fp32",
    )
    parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU")
    parser.add_argument(
        "--sort-kind",
        type=str,
        default="quicksort",
        choices=["quicksort", "mergesort"],
        help="Algorithm used to sort batch by length",
    )
    parser.add_argument(
        "--use-hugging-face",
        action="store_true",
        help="Use a HuggingFace sentence transformer",
    )

    args = parser.parse_args()
    embed_sentences(
        ifname=args.input,
        encoder_path=args.encoder,
        token_lang=args.token_lang,
        bpe_codes=args.bpe_codes,
        spm_lang=args.spm_lang,
        hugging_face=args.use_hugging_face,
        spm_model=args.spm_model,
        verbose=args.verbose,
        output=args.output,
        buffer_size=args.buffer_size,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        cpu=args.cpu,
        fp16=args.fp16,
        sort_kind=args.sort_kind,
    )