Spaces:
Sleeping
Sleeping
File size: 10,777 Bytes
05d3571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
#!/usr/bin/python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
# Tool to calculate to embed a text file
# The functions can be also imported into another Python code
import argparse
import logging
import os
import re
import sys
import tempfile
import time
from collections import namedtuple
from pathlib import Path
from subprocess import run
from typing import Optional, Union
assert os.environ.get("LASER"), "Please set the environment variable LASER"
LASER = os.environ["LASER"]
sys.path.append(LASER)
import numpy as np
from lib.text_processing import BPEfastApply, SPMApply, Token
from laser_encoders.models import SentenceEncoder
SPACE_NORMALIZER = re.compile(r"\s+")
Batch = namedtuple("Batch", "srcs tokens lengths")
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
)
logger = logging.getLogger("embed")
def buffered_read(fp, buffer_size):
buffer = []
for src_str in fp:
buffer.append(src_str.strip())
if len(buffer) >= buffer_size:
yield buffer
buffer = []
if len(buffer) > 0:
yield buffer
class HuggingFaceEncoder:
def __init__(self, encoder_name: str, verbose=False):
from sentence_transformers import SentenceTransformer
encoder = f"sentence-transformers/{encoder_name}"
if verbose:
logger.info(f"loading HuggingFace encoder: {encoder}")
self.encoder = SentenceTransformer(encoder)
def encode_sentences(self, sentences):
return self.encoder.encode(sentences)
def load_model(
encoder: str,
spm_model: str,
bpe_codes: str,
hugging_face=False,
verbose=False,
**encoder_kwargs,
) -> Union[SentenceEncoder, HuggingFaceEncoder]:
if hugging_face:
return HuggingFaceEncoder(encoder, verbose=verbose)
if spm_model:
spm_vocab = str(Path(spm_model).with_suffix(".cvocab"))
if verbose:
logger.info(f"spm_model: {spm_model}")
logger.info(f"spm_cvocab: {spm_vocab}")
else:
spm_vocab = None
return SentenceEncoder(
encoder, spm_vocab=spm_vocab, verbose=verbose, **encoder_kwargs
)
def EncodeLoad(args):
args.buffer_size = max(args.buffer_size, 1)
assert (
not args.max_sentences or args.max_sentences <= args.buffer_size
), "--max-sentences/--batch-size cannot be larger than --buffer-size"
print(" - loading encoder", args.encoder)
return SentenceEncoder(
args.encoder,
max_sentences=args.max_sentences,
max_tokens=args.max_tokens,
cpu=args.cpu,
verbose=args.verbose,
)
def EncodeTime(t):
t = int(time.time() - t)
if t < 1000:
return "{:d}s".format(t)
else:
return "{:d}m{:d}s".format(t // 60, t % 60)
# Encode sentences (existing file pointers)
def EncodeFilep(
encoder, inp_file, out_file, buffer_size=10000, fp16=False, verbose=False
):
n = 0
t = time.time()
for sentences in buffered_read(inp_file, buffer_size):
encoded = encoder.encode_sentences(sentences)
if fp16:
encoded = encoded.astype(np.float16)
encoded.tofile(out_file)
n += len(sentences)
if verbose and n % 10000 == 0:
logger.info("encoded {:d} sentences".format(n))
if verbose:
logger.info(f"encoded {n} sentences in {EncodeTime(t)}")
# Encode sentences (file names)
def EncodeFile(
encoder,
inp_fname,
out_fname,
buffer_size=10000,
fp16=False,
verbose=False,
over_write=False,
inp_encoding="utf-8",
):
# TODO :handle over write
if not os.path.isfile(out_fname):
if verbose:
logger.info(
"encoding {} to {}".format(
inp_fname if len(inp_fname) > 0 else "stdin",
out_fname,
)
)
fin = (
open(inp_fname, "r", encoding=inp_encoding, errors="surrogateescape")
if len(inp_fname) > 0
else sys.stdin
)
fout = open(out_fname, mode="wb")
EncodeFilep(
encoder, fin, fout, buffer_size=buffer_size, fp16=fp16, verbose=verbose
)
fin.close()
fout.close()
elif not over_write and verbose:
logger.info("encoder: {} exists already".format(os.path.basename(out_fname)))
# Load existing embeddings
def EmbedLoad(fname, dim=1024, verbose=False, fp16=False):
x = np.fromfile(fname, dtype=(np.float16 if fp16 else np.float32), count=-1)
x.resize(x.shape[0] // dim, dim)
if verbose:
print(" - Embeddings: {:s}, {:d}x{:d}".format(fname, x.shape[0], dim))
return x
# Get memory mapped embeddings
def EmbedMmap(fname, dim=1024, dtype=np.float32, verbose=False):
nbex = int(os.path.getsize(fname) / dim / np.dtype(dtype).itemsize)
E = np.memmap(fname, mode="r", dtype=dtype, shape=(nbex, dim))
if verbose:
print(" - embeddings on disk: {:s} {:d} x {:d}".format(fname, nbex, dim))
return E
def embed_sentences(
ifname: str,
output: str,
encoder: Union[SentenceEncoder, HuggingFaceEncoder] = None,
encoder_path: str = None,
hugging_face=False,
token_lang: Optional[str] = "--",
bpe_codes: Optional[str] = None,
spm_lang: Optional[str] = "en",
spm_model: Optional[str] = None,
verbose: bool = False,
buffer_size: int = 10000,
max_tokens: int = 12000,
max_sentences: Optional[int] = None,
cpu: bool = False,
fp16: bool = False,
sort_kind: str = "quicksort",
):
assert encoder or encoder_path, "Provide initialised encoder or encoder_path"
buffer_size = max(buffer_size, 1)
assert (
not max_sentences or max_sentences <= buffer_size
), "--max-sentences/--batch-size cannot be larger than --buffer-size"
assert not (bpe_codes and spm_model), "Cannot specify both spm and bpe"
if encoder_path:
encoder = load_model(
encoder_path,
spm_model,
bpe_codes,
verbose=verbose,
hugging_face=hugging_face,
max_sentences=max_sentences,
max_tokens=max_tokens,
sort_kind=sort_kind,
cpu=cpu,
)
if not ifname:
ifname = "" # default to stdin
with tempfile.TemporaryDirectory() as tmpdir:
if token_lang != "--":
tok_fname = os.path.join(tmpdir, "tok")
Token(
ifname,
tok_fname,
lang=token_lang,
romanize=True if token_lang == "el" else False,
lower_case=True,
gzip=False,
verbose=verbose,
over_write=False,
)
ifname = tok_fname
if bpe_codes:
if ifname == "": # stdin
ifname = os.path.join(tmpdir, "no_tok")
run(f"cat > {ifname}", shell=True)
bpe_fname = os.path.join(tmpdir, "bpe")
BPEfastApply(
ifname, bpe_fname, bpe_codes, verbose=verbose, over_write=False
)
ifname = bpe_fname
if spm_model:
spm_fname = os.path.join(tmpdir, "spm")
SPMApply(
ifname,
spm_fname,
spm_model,
lang=spm_lang,
lower_case=True,
verbose=verbose,
over_write=False,
)
ifname = spm_fname
EncodeFile(
encoder,
ifname,
output,
verbose=verbose,
over_write=False,
buffer_size=buffer_size,
fp16=fp16,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LASER: Embed sentences")
parser.add_argument(
"-i",
"--input",
type=str,
default=None,
help="Input text file",
)
parser.add_argument("--encoder", type=str, required=True, help="encoder to be used")
parser.add_argument(
"--token-lang",
type=str,
default="--",
help="Perform tokenization with given language ('--' for no tokenization)",
)
parser.add_argument(
"--bpe-codes", type=str, default=None, help="Apply BPE using specified codes"
)
parser.add_argument(
"--spm-lang", type=str, default="en", help="Apply SPM using specified language"
)
parser.add_argument(
"--spm-model", type=str, default=None, help="Apply SPM using specified model"
)
parser.add_argument("-v", "--verbose", action="store_true", help="Detailed output")
parser.add_argument(
"-o", "--output", required=True, help="Output sentence embeddings"
)
parser.add_argument(
"--buffer-size", type=int, default=10000, help="Buffer size (sentences)"
)
parser.add_argument(
"--max-tokens",
type=int,
default=12000,
help="Maximum number of tokens to process in a batch",
)
parser.add_argument(
"--max-sentences",
type=int,
default=None,
help="Maximum number of sentences to process in a batch",
)
parser.add_argument(
"--fp16",
action="store_true",
help="Store embedding matrices in fp16 instead of fp32",
)
parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU")
parser.add_argument(
"--sort-kind",
type=str,
default="quicksort",
choices=["quicksort", "mergesort"],
help="Algorithm used to sort batch by length",
)
parser.add_argument(
"--use-hugging-face",
action="store_true",
help="Use a HuggingFace sentence transformer",
)
args = parser.parse_args()
embed_sentences(
ifname=args.input,
encoder_path=args.encoder,
token_lang=args.token_lang,
bpe_codes=args.bpe_codes,
spm_lang=args.spm_lang,
hugging_face=args.use_hugging_face,
spm_model=args.spm_model,
verbose=args.verbose,
output=args.output,
buffer_size=args.buffer_size,
max_tokens=args.max_tokens,
max_sentences=args.max_sentences,
cpu=args.cpu,
fp16=args.fp16,
sort_kind=args.sort_kind,
)
|