File size: 2,693 Bytes
05d3571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
## LASER Docker Image

This image provides a convenient way to run LASER in a Docker container.

### Building the image
To build the image, run the following command from the root of the LASER directory:

```
docker build --tag laser -f docker/Dockerfile .
```
### Specifying Languages with `langs` Argument

You can pre-download the encoders and tokenizers for specific languages by using the `langs` build argument. This argument accepts a space-separated list of language codes. For example, to build an image with models for English and French, use the following command:
```
docker build --build-arg langs="eng_Latn fra_Latn" -t laser -f docker/Dockerfile .
```
If the `langs` argument is not specified during the build process, the image will default to building with English (`eng_Latn`). It's important to note that in this default case where English is selected, the LASER2 model, which supports 92 languages, is used. For a comprehensive list of LASER2 supported languages, refer to `LASER2_LANGUAGES_LIST` in [`language_list.py`](https://github.com/facebookresearch/LASER/blob/main/laser_encoders/language_list.py).


### Running the Image
Once the image is built, you can run it with the following command:

```
docker run -it laser
```
**Note:** If you want to expose a local port to the REST server on top of the embed task, you can do so by executing the following command instead of the last command:

```
docker run -it -p [CHANGEME_LOCAL_PORT]:80 laser python app.py
```
This will override the command line entrypoint of the Docker container.

Example:

```
docker run -it -p 8081:80 laser python app.py
```

This Flask server will serve a REST Api that can be use by calling your server with this URL :

```
http://127.0.0.1:[CHANGEME_LOCAL_PORT]/vectorize?q=[YOUR_SENTENCE_URL_ENCODED]&lang=[LANGUAGE]
```

Example:

```
http://127.0.0.1:8081/vectorize?q=ki%20lo%20'orukọ%20ẹ&lang=yor
```

Sample response:
```
{
    "content": "ki lo 'orukọ ẹ",
    "embedding": [
        [
            -0.10241681337356567,
            0.11120740324258804,
            -0.26641348004341125,
            -0.055699944496154785,
            ....
            ....
            ....
            -0.034048307687044144,
            0.11005636304616928,
            -0.3238321840763092,
            -0.060631975531578064,
            -0.19269055128097534,
        ]
}
```

Here is an example of how you can send requests to it with python:

```python
import requests
import numpy as np
url = "http://127.0.0.1:[CHANGEME_LOCAL_PORT]/vectorize"
params = {"q": "Hey, how are you?\nI'm OK and you?", "lang": "en"}
resp = requests.get(url=url, params=params).json()
print(resp["embedding"])
```