#!/usr/bin/python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # # LASER Language-Agnostic SEntence Representations # is a toolkit to calculate multilingual sentence embeddings # and to use them for document classification, bitext filtering # and mining # # -------------------------------------------------------- # # Tool to calculate multilingual similarity error rate # on various predefined test sets import os import argparse import pandas import tempfile import numpy as np from pathlib import Path import itertools import logging import sys from typing import List, Tuple, Dict from tabulate import tabulate from collections import defaultdict from xsim import xSIM from embed import embed_sentences, load_model logging.basicConfig( stream=sys.stdout, level=logging.INFO, format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", ) logger = logging.getLogger("eval") class Eval: def __init__(self, args): self.base_dir = args.base_dir self.corpus = args.corpus self.split = args.corpus_part self.min_sents = args.min_sents self.index_comparison = args.index_comparison self.emb_dimension = args.embedding_dimension self.encoder_args = { k: v for k, v in args._get_kwargs() if k in ["max_sentences", "max_tokens", "cpu", "sort_kind", "verbose"] } self.src_bpe_codes = args.src_bpe_codes self.tgt_bpe_codes = args.tgt_bpe_codes self.src_spm_model = args.src_spm_model self.tgt_spm_model = args.tgt_spm_model logger.info("loading src encoder") self.src_encoder = load_model( args.src_encoder, self.src_spm_model, self.src_bpe_codes, hugging_face=args.use_hugging_face, **self.encoder_args, ) if args.tgt_encoder: logger.info("loading tgt encoder") self.tgt_encoder = load_model( args.tgt_encoder, self.tgt_spm_model, self.tgt_bpe_codes, hugging_face=args.use_hugging_face, **self.encoder_args, ) else: logger.info("encoding tgt using src encoder") self.tgt_encoder = self.src_encoder self.tgt_bpe_codes = self.src_bpe_codes self.tgt_spm_model = self.src_spm_model self.nway = args.nway self.buffer_size = args.buffer_size self.fp16 = args.fp16 self.margin = args.margin def _embed( self, tmpdir, langs, encoder, spm_model, bpe_codes, tgt_aug_langs=[] ) -> List[List[str]]: emb_data = [] for lang in langs: augjson = None fname = f"{lang}.{self.split}" infile = self.base_dir / self.corpus / self.split / fname assert infile.exists(), f"{infile} does not exist" outfile = tmpdir / fname if lang in tgt_aug_langs: fname = f"{lang}_augmented.{self.split}" fjname = f"{lang}_errtype.{self.split}.json" augment_dir = self.base_dir / self.corpus / (self.split + "_augmented") augjson = augment_dir / fjname auginfile = augment_dir / fname assert augjson.exists(), f"{augjson} does not exist" assert auginfile.exists(), f"{auginfile} does not exist" combined_infile = tmpdir / f"combined_{lang}" with open(combined_infile, "w") as newfile: for f in [infile, auginfile]: with open(f) as fin: newfile.write(fin.read()) infile = combined_infile embed_sentences( str(infile), str(outfile), encoder=encoder, spm_model=spm_model, bpe_codes=bpe_codes, token_lang=lang if bpe_codes else "--", buffer_size=self.buffer_size, fp16=self.fp16, **self.encoder_args, ) assert ( os.path.isfile(outfile) and os.path.getsize(outfile) > 0 ), f"Error encoding {infile}" emb_data.append([lang, infile, outfile, augjson]) return emb_data def _xsim( self, src_emb, src_lang, tgt_emb, tgt_lang, tgt_txt, augjson=None ) -> Tuple[int, int, Dict[str, int]]: return xSIM( src_emb, tgt_emb, margin=self.margin, dim=self.emb_dimension, fp16=self.fp16, eval_text=tgt_txt if not self.index_comparison else None, augmented_json=augjson, ) def calc_xsim( self, embdir, src_langs, tgt_langs, tgt_aug_langs, err_sum=0, totl_nbex=0 ) -> None: outputs = [] src_emb_data = self._embed( embdir, src_langs, self.src_encoder, self.src_spm_model, self.src_bpe_codes, ) tgt_emb_data = self._embed( embdir, tgt_langs, self.tgt_encoder, self.tgt_spm_model, self.tgt_bpe_codes, tgt_aug_langs, ) aug_df = defaultdict(lambda: defaultdict()) combs = list(itertools.product(src_emb_data, tgt_emb_data)) for (src_lang, _, src_emb, _), (tgt_lang, tgt_txt, tgt_emb, augjson) in combs: if src_lang == tgt_lang: continue err, nbex, aug_report = self._xsim( src_emb, src_lang, tgt_emb, tgt_lang, tgt_txt, augjson ) result = round(100 * err / nbex, 2) if tgt_lang in tgt_aug_langs: aug_df[tgt_lang][src_lang] = aug_report if nbex < self.min_sents: result = "skipped" else: err_sum += err totl_nbex += nbex outputs.append( [self.corpus, f"{src_lang}-{tgt_lang}", f"{result}", f"{nbex}"] ) outputs.append( [ self.corpus, "average", f"{round(100 * err_sum / totl_nbex, 2)}", f"{len(combs)}", ] ) print( tabulate( outputs, tablefmt="psql", headers=[ "dataset", "src-tgt", "xsim" + ("(++)" if tgt_aug_langs else ""), "nbex", ], ) ) for tgt_aug_lang in tgt_aug_langs: df = pandas.DataFrame.from_dict(aug_df[tgt_aug_lang]).fillna(0).T print( f"\nAbsolute error under augmented transformations for: {tgt_aug_lang}" ) print(f"{tabulate(df, df.columns, floatfmt='.2f', tablefmt='grid')}") def calc_xsim_nway(self, embdir, langs) -> None: err_matrix = np.zeros((len(langs), len(langs))) emb_data = self._embed( embdir, langs, self.src_encoder, self.src_spm_model, self.src_bpe_codes, ) for i1, (src_lang, _, src_emb, _) in enumerate(emb_data): for i2, (tgt_lang, tgt_txt, tgt_emb, _) in enumerate(emb_data): if src_lang == tgt_lang: err_matrix[i1, i2] = 0 else: err, nbex, _ = self._xsim( src_emb, src_lang, tgt_emb, tgt_lang, tgt_txt ) err_matrix[i1, i2] = 100 * err / nbex df = pandas.DataFrame(err_matrix, columns=langs, index=langs) df.loc["avg"] = df.sum() / float(df.shape[0] - 1) # exclude diagonal in average print(f"\n{tabulate(df, langs, floatfmt='.2f', tablefmt='grid')}\n\n") print(f"Global average: {df.loc['avg'].mean():.2f}") def run_eval(args) -> None: evaluation = Eval(args) tmp_dir = None if args.embed_dir: os.makedirs(args.embed_dir, exist_ok=True) embed_dir = args.embed_dir else: tmp_dir = tempfile.TemporaryDirectory() embed_dir = Path(tmp_dir.name) src_langs = sorted(args.src_langs.split(",")) tgt_aug_langs = sorted(args.tgt_aug_langs.split(",")) if args.tgt_aug_langs else [] if evaluation.nway: evaluation.calc_xsim_nway(embed_dir, src_langs) else: assert ( args.tgt_langs ), "Please provide tgt langs when not performing n-way comparison" tgt_langs = sorted(args.tgt_langs.split(",")) evaluation.calc_xsim(embed_dir, src_langs, tgt_langs, tgt_aug_langs) if tmp_dir: tmp_dir.cleanup() # remove temporary directory if __name__ == "__main__": parser = argparse.ArgumentParser( description="LASER: multilingual similarity error evaluation" ) parser.add_argument( "--base-dir", type=Path, default=None, help="Base directory for evaluation files", required=True, ) parser.add_argument( "--corpus", type=str, default=None, help="Name of evaluation corpus", required=True, ) parser.add_argument( "--corpus-part", type=str, default=None, help="Specify split of the corpus to use e.g., dev", required=True, ) parser.add_argument( "--margin", type=str, default=None, help="Margin for xSIM calculation. See: https://aclanthology.org/P19-1309", ) parser.add_argument( "--min-sents", type=int, default=100, help="Only use test sets which have at least N sentences", ) parser.add_argument( "--nway", action="store_true", help="Test N-way for corpora which support it" ) parser.add_argument( "--embed-dir", type=Path, default=None, help="Store/load embeddings from specified directory (default temporary)", ) parser.add_argument( "--index-comparison", action="store_true", help="Use index comparison instead of texts (not recommended when test data contains duplicates)", ) parser.add_argument("--src-spm-model", type=str, default=None) parser.add_argument("--tgt-spm-model", type=str, default=None) parser.add_argument( "--src-bpe-codes", type=str, default=None, help="Path to bpe codes for src model", ) parser.add_argument( "--tgt-bpe-codes", type=str, default=None, help="Path to bpe codes for tgt model", ) parser.add_argument("--src-encoder", type=str, default=None, required=True) parser.add_argument("--tgt-encoder", type=str, default=None) parser.add_argument( "--buffer-size", type=int, default=100, help="Buffer size (sentences)" ) parser.add_argument( "--max-tokens", type=int, default=12000, help="Maximum number of tokens to process in a batch", ) parser.add_argument( "--max-sentences", type=int, default=None, help="Maximum number of sentences to process in a batch", ) parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU") parser.add_argument( "--src-langs", type=str, default=None, help="Source-side languages for evaluation", required=True, ) parser.add_argument( "--tgt-langs", type=str, default=None, help="Target-side languages for evaluation", ) parser.add_argument( "--tgt-aug-langs", type=str, default=None, help="languages with augmented data", required=False, ) parser.add_argument( "--fp16", action="store_true", help="Store embedding matrices in fp16 instead of fp32", ) parser.add_argument( "--sort-kind", type=str, default="quicksort", choices=["quicksort", "mergesort"], help="Algorithm used to sort batch by length", ) parser.add_argument( "--use-hugging-face", action="store_true", help="Use a HuggingFace sentence transformer", ) parser.add_argument( "--embedding-dimension", type=int, default=1024, help="Embedding dimension for encoders", ) parser.add_argument("-v", "--verbose", action="store_true", help="Detailed output") args = parser.parse_args() run_eval(args)