#!/usr/bin/python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # # LASER Language-Agnostic SEntence Representations # is a toolkit to calculate multilingual sentence embeddings # and to use them for document classification, bitext filtering # and mining # # -------------------------------------------------------- # # Tool to calculate to embed a text file # The functions can be also imported into another Python code import argparse import logging import os import re import sys import tempfile import time from collections import namedtuple from pathlib import Path from subprocess import run from typing import Optional, Union assert os.environ.get("LASER"), "Please set the environment variable LASER" LASER = os.environ["LASER"] sys.path.append(LASER) import numpy as np from lib.text_processing import BPEfastApply, SPMApply, Token from laser_encoders.models import SentenceEncoder SPACE_NORMALIZER = re.compile(r"\s+") Batch = namedtuple("Batch", "srcs tokens lengths") logging.basicConfig( stream=sys.stdout, level=logging.INFO, format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", ) logger = logging.getLogger("embed") def buffered_read(fp, buffer_size): buffer = [] for src_str in fp: buffer.append(src_str.strip()) if len(buffer) >= buffer_size: yield buffer buffer = [] if len(buffer) > 0: yield buffer class HuggingFaceEncoder: def __init__(self, encoder_name: str, verbose=False): from sentence_transformers import SentenceTransformer encoder = f"sentence-transformers/{encoder_name}" if verbose: logger.info(f"loading HuggingFace encoder: {encoder}") self.encoder = SentenceTransformer(encoder) def encode_sentences(self, sentences): return self.encoder.encode(sentences) def load_model( encoder: str, spm_model: str, bpe_codes: str, hugging_face=False, verbose=False, **encoder_kwargs, ) -> Union[SentenceEncoder, HuggingFaceEncoder]: if hugging_face: return HuggingFaceEncoder(encoder, verbose=verbose) if spm_model: spm_vocab = str(Path(spm_model).with_suffix(".cvocab")) if verbose: logger.info(f"spm_model: {spm_model}") logger.info(f"spm_cvocab: {spm_vocab}") else: spm_vocab = None return SentenceEncoder( encoder, spm_vocab=spm_vocab, verbose=verbose, **encoder_kwargs ) def EncodeLoad(args): args.buffer_size = max(args.buffer_size, 1) assert ( not args.max_sentences or args.max_sentences <= args.buffer_size ), "--max-sentences/--batch-size cannot be larger than --buffer-size" print(" - loading encoder", args.encoder) return SentenceEncoder( args.encoder, max_sentences=args.max_sentences, max_tokens=args.max_tokens, cpu=args.cpu, verbose=args.verbose, ) def EncodeTime(t): t = int(time.time() - t) if t < 1000: return "{:d}s".format(t) else: return "{:d}m{:d}s".format(t // 60, t % 60) # Encode sentences (existing file pointers) def EncodeFilep( encoder, inp_file, out_file, buffer_size=10000, fp16=False, verbose=False ): n = 0 t = time.time() for sentences in buffered_read(inp_file, buffer_size): encoded = encoder.encode_sentences(sentences) if fp16: encoded = encoded.astype(np.float16) encoded.tofile(out_file) n += len(sentences) if verbose and n % 10000 == 0: logger.info("encoded {:d} sentences".format(n)) if verbose: logger.info(f"encoded {n} sentences in {EncodeTime(t)}") # Encode sentences (file names) def EncodeFile( encoder, inp_fname, out_fname, buffer_size=10000, fp16=False, verbose=False, over_write=False, inp_encoding="utf-8", ): # TODO :handle over write if not os.path.isfile(out_fname): if verbose: logger.info( "encoding {} to {}".format( inp_fname if len(inp_fname) > 0 else "stdin", out_fname, ) ) fin = ( open(inp_fname, "r", encoding=inp_encoding, errors="surrogateescape") if len(inp_fname) > 0 else sys.stdin ) fout = open(out_fname, mode="wb") EncodeFilep( encoder, fin, fout, buffer_size=buffer_size, fp16=fp16, verbose=verbose ) fin.close() fout.close() elif not over_write and verbose: logger.info("encoder: {} exists already".format(os.path.basename(out_fname))) # Load existing embeddings def EmbedLoad(fname, dim=1024, verbose=False, fp16=False): x = np.fromfile(fname, dtype=(np.float16 if fp16 else np.float32), count=-1) x.resize(x.shape[0] // dim, dim) if verbose: print(" - Embeddings: {:s}, {:d}x{:d}".format(fname, x.shape[0], dim)) return x # Get memory mapped embeddings def EmbedMmap(fname, dim=1024, dtype=np.float32, verbose=False): nbex = int(os.path.getsize(fname) / dim / np.dtype(dtype).itemsize) E = np.memmap(fname, mode="r", dtype=dtype, shape=(nbex, dim)) if verbose: print(" - embeddings on disk: {:s} {:d} x {:d}".format(fname, nbex, dim)) return E def embed_sentences( ifname: str, output: str, encoder: Union[SentenceEncoder, HuggingFaceEncoder] = None, encoder_path: str = None, hugging_face=False, token_lang: Optional[str] = "--", bpe_codes: Optional[str] = None, spm_lang: Optional[str] = "en", spm_model: Optional[str] = None, verbose: bool = False, buffer_size: int = 10000, max_tokens: int = 12000, max_sentences: Optional[int] = None, cpu: bool = False, fp16: bool = False, sort_kind: str = "quicksort", ): assert encoder or encoder_path, "Provide initialised encoder or encoder_path" buffer_size = max(buffer_size, 1) assert ( not max_sentences or max_sentences <= buffer_size ), "--max-sentences/--batch-size cannot be larger than --buffer-size" assert not (bpe_codes and spm_model), "Cannot specify both spm and bpe" if encoder_path: encoder = load_model( encoder_path, spm_model, bpe_codes, verbose=verbose, hugging_face=hugging_face, max_sentences=max_sentences, max_tokens=max_tokens, sort_kind=sort_kind, cpu=cpu, ) if not ifname: ifname = "" # default to stdin with tempfile.TemporaryDirectory() as tmpdir: if token_lang != "--": tok_fname = os.path.join(tmpdir, "tok") Token( ifname, tok_fname, lang=token_lang, romanize=True if token_lang == "el" else False, lower_case=True, gzip=False, verbose=verbose, over_write=False, ) ifname = tok_fname if bpe_codes: if ifname == "": # stdin ifname = os.path.join(tmpdir, "no_tok") run(f"cat > {ifname}", shell=True) bpe_fname = os.path.join(tmpdir, "bpe") BPEfastApply( ifname, bpe_fname, bpe_codes, verbose=verbose, over_write=False ) ifname = bpe_fname if spm_model: spm_fname = os.path.join(tmpdir, "spm") SPMApply( ifname, spm_fname, spm_model, lang=spm_lang, lower_case=True, verbose=verbose, over_write=False, ) ifname = spm_fname EncodeFile( encoder, ifname, output, verbose=verbose, over_write=False, buffer_size=buffer_size, fp16=fp16, ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="LASER: Embed sentences") parser.add_argument( "-i", "--input", type=str, default=None, help="Input text file", ) parser.add_argument("--encoder", type=str, required=True, help="encoder to be used") parser.add_argument( "--token-lang", type=str, default="--", help="Perform tokenization with given language ('--' for no tokenization)", ) parser.add_argument( "--bpe-codes", type=str, default=None, help="Apply BPE using specified codes" ) parser.add_argument( "--spm-lang", type=str, default="en", help="Apply SPM using specified language" ) parser.add_argument( "--spm-model", type=str, default=None, help="Apply SPM using specified model" ) parser.add_argument("-v", "--verbose", action="store_true", help="Detailed output") parser.add_argument( "-o", "--output", required=True, help="Output sentence embeddings" ) parser.add_argument( "--buffer-size", type=int, default=10000, help="Buffer size (sentences)" ) parser.add_argument( "--max-tokens", type=int, default=12000, help="Maximum number of tokens to process in a batch", ) parser.add_argument( "--max-sentences", type=int, default=None, help="Maximum number of sentences to process in a batch", ) parser.add_argument( "--fp16", action="store_true", help="Store embedding matrices in fp16 instead of fp32", ) parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU") parser.add_argument( "--sort-kind", type=str, default="quicksort", choices=["quicksort", "mergesort"], help="Algorithm used to sort batch by length", ) parser.add_argument( "--use-hugging-face", action="store_true", help="Use a HuggingFace sentence transformer", ) args = parser.parse_args() embed_sentences( ifname=args.input, encoder_path=args.encoder, token_lang=args.token_lang, bpe_codes=args.bpe_codes, spm_lang=args.spm_lang, hugging_face=args.use_hugging_face, spm_model=args.spm_model, verbose=args.verbose, output=args.output, buffer_size=args.buffer_size, max_tokens=args.max_tokens, max_sentences=args.max_sentences, cpu=args.cpu, fp16=args.fp16, sort_kind=args.sort_kind, )