KuangDW
Add laser2.spm using Git LFS
05d3571
#!/usr/bin/python
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
#
import os
import copy
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data_utils
import numpy as np
import faiss
################################################
def LoadDataNLI(fn1, fn2, fn_lbl,
dim=1024, bsize=32,
fraction=1.0,
shuffle=False, quiet=False):
x = np.fromfile(fn1, dtype=np.float32, count=-1)
x.resize(x.shape[0] // dim, dim)
faiss.normalize_L2(x)
y = np.fromfile(fn2, dtype=np.float32, count=-1)
y.resize(y.shape[0] // dim, dim)
faiss.normalize_L2(y)
lbl = np.loadtxt(fn_lbl, dtype=np.int32)
lbl.reshape(lbl.shape[0], 1)
if not quiet:
print(' - read {:d}x{:d} elements in {:s}'.format(x.shape[0], x.shape[1], fn1))
print(' - read {:d}x{:d} elements in {:s}'.format(y.shape[0], y.shape[1], fn2))
print(' - read {:d} labels [{:d},{:d}] in {:s}'
.format(lbl.shape[0], lbl.min(), lbl.max(), fn_lbl))
if fraction < 1.0:
N = int(x.shape[0] * fraction)
if not quiet:
print(' - using only the first {:d} examples'.format(N))
x = x[:N][:]
y = y[:N][:]
lbl = lbl[:N][:]
if not quiet:
print(' - combine premises and hyps')
nli = np.concatenate((x, y, np.absolute(x - y), np.multiply(x, y)), axis=1)
D = data_utils.TensorDataset(torch.from_numpy(nli), torch.from_numpy(lbl))
loader = data_utils.DataLoader(D, batch_size=bsize, shuffle=shuffle)
return loader
################################################
class Net(nn.Module):
def __init__(self, fname='',
idim=4*1024, odim=2, nhid=None,
dropout=0.0, gpu=0, activation='TANH'):
super(Net, self).__init__()
self.gpu = gpu
if os.path.isfile(fname):
print(' - loading mlp from %s'.format(fname))
loaded = torch.load(fname)
self.mlp = loaded.mlp
else:
modules = []
print(' - mlp {:d}'.format(idim), end='')
if len(nhid) > 0:
if dropout > 0:
modules.append(nn.Dropout(p=dropout))
nprev = idim
for nh in nhid:
if nh > 0:
modules.append(nn.Linear(nprev, nh))
nprev = nh
if activation == 'TANH':
modules.append(nn.Tanh())
print('-{:d}t'.format(nh), end='')
elif activation == 'RELU':
modules.append(nn.ReLU())
print('-{:d}r'.format(nh), end='')
else:
raise Exception('Unrecognised activation {activation}')
if dropout > 0:
modules.append(nn.Dropout(p=dropout))
modules.append(nn.Linear(nprev, odim))
print('-{:d}, dropout={:.1f}'.format(odim, dropout))
else:
modules.append(nn.Linear(idim, odim))
print(' - mlp {:d}-{:d}'.format(idim, odim))
self.mlp = nn.Sequential(*modules)
if self.gpu >= 0:
self.mlp = self.mlp.cuda()
def forward(self, x):
return self.mlp(x)
def TestCorpus(self, dset, name=' Dev', nlbl=3, out_fname=None):
correct = 0
total = 0
self.mlp.train(mode=False)
corr = np.zeros(nlbl, dtype=np.int32)
if out_fname:
fp = open(out_fname, 'w')
fp.write('# outputs target_class predicted_class\n')
for data in dset:
X, Y = data
Y = Y.long()
if self.gpu >= 0:
X = X.cuda()
Y = Y.cuda()
outputs = self.mlp(X)
_, predicted = torch.max(outputs.data, 1)
total += Y.size(0)
correct += (predicted == Y).int().sum()
for i in range(nlbl):
corr[i] += (predicted == i).int().sum()
if out_fname:
for b in range(outputs.shape[0]):
for i in range(nlbl):
fp.write('{:f} '.format(outputs[b][i]))
fp.write('{:d} {:d}\n'
.format(predicted[b], Y[b]))
print(' | {:4s}: {:5.2f}%'
.format(name, 100.0 * correct.float() / total), end='')
# print(' | loss {:6.4f}'.format(loss/total), end='')
print(' | classes:', end='')
for i in range(nlbl):
print(' {:5.2f}'.format(100.0 * corr[i] / total), end='')
if out_fname:
fp.close()
return correct, total
################################################
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description='Classifier for NLI')
# Data
parser.add_argument(
'--base-dir', '-b', type=str, required=True, metavar='PATH',
help='Directory with all the data files)')
parser.add_argument(
'--load', '-l', type=str, required=False, metavar='PATH', default='',
help='Load network from file before training or for testing')
parser.add_argument(
'--save', '-s', type=str, required=False, metavar='PATH', default='',
help='File in which to save best network')
parser.add_argument(
'--train', '-t', type=str, required=True, metavar='STR',
help='Name of training corpus')
parser.add_argument(
'--train-labels', '-T', type=str, required=True, metavar='STR',
help='Name of training corpus (labels)')
parser.add_argument(
'--dev', '-d', type=str, required=True, metavar='STR',
help='Name of development corpus')
parser.add_argument(
'--dev-labels', '-D', type=str, required=True, metavar='STR',
help='Name of development corpus (labels)')
parser.add_argument(
'--test', '-e', type=str, default=None,
help='Name of test corpus without language extension')
parser.add_argument(
'--test-labels', '-E', type=str, default=None,
help='Name of test corpus without language extension (labels)')
parser.add_argument(
'--lang', '-L', nargs='+', default=None,
help='List of languages to test on')
parser.add_argument(
'--cross-lingual', '-x', action='store_true',
help='Also test on premise and hypothesis in different languages)')
parser.add_argument(
'--parts', '-p', type=str, nargs='+', default=['prem', 'hyp'],
help='Name of the two input parts to compare')
parser.add_argument(
'--fraction', '-f', type=float, default=1.0,
help='Fraction of training examples to use (from the beginning)')
parser.add_argument(
'--save-outputs', type=str, default=None,
help='File name to save classifier outputs ("l1-l2.txt" will be added)')
# network definition
parser.add_argument(
'--dim', '-m', type=int, default=1024,
help='dimension of sentence embeddings')
parser.add_argument(
'--nhid', '-n', type=int, default=0, nargs='+',
help='List of hidden layer(s) dimensions')
parser.add_argument(
'--dropout', '-o', type=float, default=0.0, metavar='FLOAT',
help='Value of dropout')
parser.add_argument(
'--nepoch', '-N', type=int, default=100, metavar='INT',
help='Number of epochs')
parser.add_argument(
'--bsize', '-B', type=int, default=128, metavar='INT',
help='Batch size')
parser.add_argument(
'--seed', '-S', type=int, default=123456789, metavar='INT',
help='Initial random seed')
parser.add_argument(
'--lr', type=float, default=0.001, metavar='FLOAT',
help='Learning rate')
parser.add_argument(
'--activation', '-a', type=str, default='TANH', metavar='STR',
help='NonLinearity to use in hidden layers')
parser.add_argument(
'--gpu', '-g', type=int, default=-1, metavar='INT',
help='GPU id (-1 for CPU)')
args = parser.parse_args()
train_loader = LoadDataNLI(os.path.join(args.base_dir, args.train % args.parts[0]),
os.path.join(args.base_dir, args.train % args.parts[1]),
os.path.join(args.base_dir, args.train_labels),
dim=args.dim, bsize=args.bsize, shuffle=True, fraction=args.fraction)
dev_loader = LoadDataNLI(os.path.join(args.base_dir, args.dev % args.parts[0]),
os.path.join(args.base_dir, args.dev % args.parts[1]),
os.path.join(args.base_dir, args.dev_labels),
dim=args.dim, bsize=args.bsize, shuffle=False)
# set GPU and random seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.gpu < 0:
print(' - running on cpu')
else:
print(' - running on gpu {:d}'.format(args.gpu))
torch.cuda.set_device(args.gpu)
torch.cuda.manual_seed(args.seed)
print(' - setting seed to {:d}'.format(args.seed))
print(' - lrate is {:f} and bsize {:d}'.format(args.lr, args.bsize))
# create network
net = Net(fname=args.load,
idim=4*args.dim, odim=3, nhid=args.nhid,
dropout=args.dropout, gpu=args.gpu,
activation=args.activation)
if args.gpu >= 0:
criterion = nn.CrossEntropyLoss().cuda()
else:
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=args.lr)
corr_best = 0
# loop multiple times over the dataset
for epoch in range(args.nepoch):
loss_epoch = 0.0
print('Ep {:4d}'.format(epoch), end='')
# for inputs, labels in train_loader:
for i, data in enumerate(train_loader, 0):
# get the inputs
inputs, labels = data
labels = labels.long()
if args.gpu >= 0:
inputs = inputs.cuda()
labels = labels.cuda()
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
net.train(mode=True)
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
loss_epoch += loss.item()
print(' | loss {:e}'.format(loss_epoch), end='')
corr, nbex = net.TestCorpus(dev_loader, 'Dev')
if corr >= corr_best:
print(' | saved')
corr_best = corr
net_best = copy.deepcopy(net)
else:
print('')
if 'net_best' in globals():
if args.save != '':
torch.save(net_best.cpu(), args.save)
print('Best Dev: {:d} = {:5.2f}%'
.format(corr_best, 100.0 * corr_best.float() / nbex))
if args.gpu >= 0:
net_best = net_best.cuda()
# test on (several) languages
if args.test is None:
os.exit()
print('Testing on {}'.format(args.test))
if not args.cross_lingual:
for l in args.lang:
test_loader = LoadDataNLI(os.path.join(args.base_dir, args.test % args.parts[0] + '.' + l),
os.path.join(args.base_dir, args.test % args.parts[1] + '.' + l),
os.path.join(args.base_dir, args.test_labels + '.' + l),
dim=args.dim, bsize=args.bsize, shuffle=False, quiet=True)
print('Ep best | Eval Test lang {:s}'.format(l), end='')
ofname = args.save_outputs + '.{:s}-{:s}'.format(l, l) + '.txt' if args.save_outputs else None
net_best.TestCorpus(test_loader, 'Test', out_fname=ofname)
print('')
else: # cross-lingual
err = np.empty((len(args.lang), len(args.lang)), dtype=np.float32)
i1 = 0
for l1 in args.lang:
i2 = 0
for l2 in args.lang:
test_loader = LoadDataNLI(os.path.join(args.base_dir, args.test % args.parts[0] + '.' + l1),
os.path.join(args.base_dir, args.test % args.parts[1] + '.' + l2),
os.path.join(args.base_dir, args.test_labels + '.' + l2),
dim=args.dim, bsize=args.bsize, shuffle=False, quiet=True)
print('Ep best | Eval Test {:s}-{:s}'.format(l1, l2), end='')
ofname = args.save_outputs + '.{:s}-{:s}'.format(l1, l2) + '.txt' if args.save_outputs else None
p, n = net_best.TestCorpus(test_loader, 'Test',
out_fname=ofname)
err[i1, i2] = 100.0 * float(p) / n
i2 += 1
print('')
i1 += 1
print('\nAccuracy matrix:')
print(' ', end='')
for i2 in range(err.shape[1]):
print(' {:4s} '.format(args.lang[i2]), end='')
print(' avg')
for i1 in range(err.shape[0]):
print('{:4s}'.format(args.lang[i1]), end='')
for i2 in range(err.shape[1]):
print(' {:5.2f}'.format(err[i1, i2]), end='')
print(' {:5.2f}'.format(np.average(err[i1, :])))
print('avg ', end='')
for i2 in range(err.shape[1]):
print(' {:5.2f}'.format(np.average(err[:, i2])), end='')
print(' {:5.2f}'.format(np.average(err)))
if err.shape[0] == err.shape[1]:
s = 0
# TODO: we assume the first lang is English
for i1 in range(1, err.shape[0]):
s += err[i1, i1]
print('xnli-xx: {:5.2f}'.format(s/(err.shape[0]-1)))