KuangDW
Add laser2.spm using Git LFS
05d3571
#!/usr/bin/python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
import logging
import os
import re
import sys
import warnings
from collections import namedtuple
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
from fairseq.data.dictionary import Dictionary
from fairseq.models.transformer import Embedding, TransformerEncoder
from fairseq.modules import LayerNorm
from laser_encoders.download_models import LaserModelDownloader
from laser_encoders.language_list import LASER2_LANGUAGE, LASER3_LANGUAGE
from laser_encoders.laser_tokenizer import LaserTokenizer, initialize_tokenizer
SPACE_NORMALIZER = re.compile(r"\s+")
Batch = namedtuple("Batch", "srcs tokens lengths")
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
)
logger = logging.getLogger("embed")
class SentenceEncoder:
def __init__(
self,
model_path,
max_sentences=None,
max_tokens=None,
spm_vocab=None,
spm_model=None,
cpu=False,
fp16=False,
verbose=False,
sort_kind="quicksort",
):
if verbose:
logger.info(f"loading encoder: {model_path}")
self.spm_model = spm_model
if self.spm_model:
self.tokenizer = LaserTokenizer(spm_model=Path(self.spm_model))
self.use_cuda = torch.cuda.is_available() and not cpu
self.max_sentences = max_sentences
self.max_tokens = max_tokens
if self.max_tokens is None and self.max_sentences is None:
self.max_sentences = 1
state_dict = torch.load(model_path)
if "params" in state_dict:
self.encoder = LaserLstmEncoder(**state_dict["params"])
self.encoder.load_state_dict(state_dict["model"])
self.dictionary = state_dict["dictionary"]
self.prepend_bos = False
self.left_padding = False
else:
self.encoder = LaserTransformerEncoder(state_dict, spm_vocab)
self.dictionary = self.encoder.dictionary.indices
self.prepend_bos = state_dict["cfg"]["model"].prepend_bos
self.left_padding = state_dict["cfg"]["model"].left_pad_source
del state_dict
self.bos_index = self.dictionary["<s>"] = 0
self.pad_index = self.dictionary["<pad>"] = 1
self.eos_index = self.dictionary["</s>"] = 2
self.unk_index = self.dictionary["<unk>"] = 3
if fp16:
self.encoder.half()
if self.use_cuda:
if verbose:
logger.info("transfer encoder to GPU")
self.encoder.cuda()
self.encoder.eval()
self.sort_kind = sort_kind
def __call__(self, text_or_batch):
if self.spm_model:
text_or_batch = self.tokenizer(text_or_batch)
if isinstance(text_or_batch, str):
text_or_batch = [text_or_batch]
return self.encode_sentences(text_or_batch)
else:
raise ValueError(
"Either initialize the encoder with an spm_model or pre-tokenize and use the encode_sentences method."
)
def _process_batch(self, batch):
tokens = batch.tokens
lengths = batch.lengths
if self.use_cuda:
tokens = tokens.cuda()
lengths = lengths.cuda()
with torch.no_grad():
sentemb = self.encoder(tokens, lengths)["sentemb"]
embeddings = sentemb.detach().cpu().numpy()
return embeddings
def _tokenize(self, line):
tokens = SPACE_NORMALIZER.sub(" ", line).strip().split()
ntokens = len(tokens)
if self.prepend_bos:
ids = torch.LongTensor(ntokens + 2)
ids[0] = self.bos_index
for i, token in enumerate(tokens):
ids[i + 1] = self.dictionary.get(token, self.unk_index)
ids[ntokens + 1] = self.eos_index
else:
ids = torch.LongTensor(ntokens + 1)
for i, token in enumerate(tokens):
ids[i] = self.dictionary.get(token, self.unk_index)
ids[ntokens] = self.eos_index
return ids
def _make_batches(self, lines):
tokens = [self._tokenize(line) for line in lines]
lengths = np.array([t.numel() for t in tokens])
indices = np.argsort(-lengths, kind=self.sort_kind)
def batch(tokens, lengths, indices):
toks = tokens[0].new_full((len(tokens), tokens[0].shape[0]), self.pad_index)
if not self.left_padding:
for i in range(len(tokens)):
toks[i, : tokens[i].shape[0]] = tokens[i]
else:
for i in range(len(tokens)):
toks[i, -tokens[i].shape[0] :] = tokens[i]
return (
Batch(srcs=None, tokens=toks, lengths=torch.LongTensor(lengths)),
indices,
)
batch_tokens, batch_lengths, batch_indices = [], [], []
ntokens = nsentences = 0
for i in indices:
if nsentences > 0 and (
(self.max_tokens is not None and ntokens + lengths[i] > self.max_tokens)
or (self.max_sentences is not None and nsentences == self.max_sentences)
):
yield batch(batch_tokens, batch_lengths, batch_indices)
ntokens = nsentences = 0
batch_tokens, batch_lengths, batch_indices = [], [], []
batch_tokens.append(tokens[i])
batch_lengths.append(lengths[i])
batch_indices.append(i)
ntokens += tokens[i].shape[0]
nsentences += 1
if nsentences > 0:
yield batch(batch_tokens, batch_lengths, batch_indices)
def encode_sentences(self, sentences, normalize_embeddings=False):
indices = []
results = []
for batch, batch_indices in self._make_batches(sentences):
indices.extend(batch_indices)
encoded_batch = self._process_batch(batch)
if normalize_embeddings:
# Perform L2 normalization on the embeddings
norms = np.linalg.norm(encoded_batch, axis=1, keepdims=True)
encoded_batch = encoded_batch / norms
results.append(encoded_batch)
return np.vstack(results)[np.argsort(indices, kind=self.sort_kind)]
class LaserTransformerEncoder(TransformerEncoder):
def __init__(self, state_dict, vocab_path):
self.dictionary = Dictionary.load(vocab_path)
if any(
k in state_dict["model"]
for k in ["encoder.layer_norm.weight", "layer_norm.weight"]
):
self.dictionary.add_symbol("<mask>")
cfg = state_dict["cfg"]["model"]
self.sentemb_criterion = cfg.sentemb_criterion
self.pad_idx = self.dictionary.pad_index
self.bos_idx = self.dictionary.bos_index
embed_tokens = Embedding(
len(self.dictionary),
cfg.encoder_embed_dim,
self.pad_idx,
)
super().__init__(cfg, self.dictionary, embed_tokens)
if "decoder.version" in state_dict["model"]:
self._remove_decoder_layers(state_dict)
if "layer_norm.weight" in state_dict["model"]:
self.layer_norm = LayerNorm(cfg.encoder_embed_dim)
self.load_state_dict(state_dict["model"])
def _remove_decoder_layers(self, state_dict):
for key in list(state_dict["model"].keys()):
if not key.startswith(
(
"encoder.layer_norm",
"encoder.layers",
"encoder.embed",
"encoder.version",
)
):
del state_dict["model"][key]
else:
renamed_key = key.replace("encoder.", "")
state_dict["model"][renamed_key] = state_dict["model"].pop(key)
def forward(self, src_tokens, src_lengths):
encoder_out = super().forward(src_tokens, src_lengths)
if isinstance(encoder_out, dict):
x = encoder_out["encoder_out"][0] # T x B x C
else:
x = encoder_out[0]
if self.sentemb_criterion == "cls":
cls_indices = src_tokens.eq(self.bos_idx).t()
sentemb = x[cls_indices, :]
else:
padding_mask = src_tokens.eq(self.pad_idx).t().unsqueeze(-1)
if padding_mask.any():
x = x.float().masked_fill_(padding_mask, float("-inf")).type_as(x)
sentemb = x.max(dim=0)[0]
return {"sentemb": sentemb}
class LaserLstmEncoder(nn.Module):
def __init__(
self,
num_embeddings,
padding_idx,
embed_dim=320,
hidden_size=512,
num_layers=1,
bidirectional=False,
left_pad=True,
padding_value=0.0,
):
super().__init__()
self.num_layers = num_layers
self.bidirectional = bidirectional
self.hidden_size = hidden_size
self.padding_idx = padding_idx
self.embed_tokens = nn.Embedding(
num_embeddings, embed_dim, padding_idx=self.padding_idx
)
self.lstm = nn.LSTM(
input_size=embed_dim,
hidden_size=hidden_size,
num_layers=num_layers,
bidirectional=bidirectional,
)
self.left_pad = left_pad
self.padding_value = padding_value
self.output_units = hidden_size
if bidirectional:
self.output_units *= 2
def forward(self, src_tokens, src_lengths):
bsz, seqlen = src_tokens.size()
# embed tokens
x = self.embed_tokens(src_tokens)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# pack embedded source tokens into a PackedSequence
packed_x = nn.utils.rnn.pack_padded_sequence(x, src_lengths.data.tolist())
# apply LSTM
if self.bidirectional:
state_size = 2 * self.num_layers, bsz, self.hidden_size
else:
state_size = self.num_layers, bsz, self.hidden_size
h0 = x.data.new(*state_size).zero_()
c0 = x.data.new(*state_size).zero_()
packed_outs, (final_hiddens, final_cells) = self.lstm(packed_x, (h0, c0))
# unpack outputs and apply dropout
x, _ = nn.utils.rnn.pad_packed_sequence(
packed_outs, padding_value=self.padding_value
)
assert list(x.size()) == [seqlen, bsz, self.output_units]
if self.bidirectional:
def combine_bidir(outs):
return torch.cat(
[
torch.cat([outs[2 * i], outs[2 * i + 1]], dim=0).view(
1, bsz, self.output_units
)
for i in range(self.num_layers)
],
dim=0,
)
final_hiddens = combine_bidir(final_hiddens)
final_cells = combine_bidir(final_cells)
encoder_padding_mask = src_tokens.eq(self.padding_idx).t()
# Set padded outputs to -inf so they are not selected by max-pooling
padding_mask = src_tokens.eq(self.padding_idx).t().unsqueeze(-1)
if padding_mask.any():
x = x.float().masked_fill_(padding_mask, float("-inf")).type_as(x)
# Build the sentence embedding by max-pooling over the encoder outputs
sentemb = x.max(dim=0)[0]
return {
"sentemb": sentemb,
"encoder_out": (x, final_hiddens, final_cells),
"encoder_padding_mask": encoder_padding_mask
if encoder_padding_mask.any()
else None,
}
def initialize_encoder(
lang: str = None,
model_dir: str = None,
spm: bool = True,
laser: str = None,
):
downloader = LaserModelDownloader(model_dir)
if laser is not None:
if laser == "laser3":
lang = downloader.get_language_code(LASER3_LANGUAGE, lang)
downloader.download_laser3(lang=lang, spm=spm)
file_path = f"laser3-{lang}.v1"
elif laser == "laser2":
downloader.download_laser2()
file_path = "laser2"
else:
raise ValueError(
f"Unsupported laser model: {laser}. Choose either laser2 or laser3."
)
else:
if lang in LASER3_LANGUAGE:
lang = downloader.get_language_code(LASER3_LANGUAGE, lang)
downloader.download_laser3(lang=lang, spm=spm)
file_path = f"laser3-{lang}.v1"
elif lang in LASER2_LANGUAGE:
downloader.download_laser2()
file_path = "laser2"
else:
raise ValueError(
f"Unsupported language name: {lang}. Please specify a supported language name."
)
model_dir = downloader.model_dir
model_path = os.path.join(model_dir, f"{file_path}.pt")
spm_vocab = os.path.join(model_dir, f"{file_path}.cvocab")
if not os.path.exists(spm_vocab):
# if there is no cvocab for the laser3 lang use laser2 cvocab
spm_vocab = os.path.join(model_dir, "laser2.cvocab")
return SentenceEncoder(model_path=model_path, spm_vocab=spm_vocab, spm_model=None)
class LaserEncoderPipeline:
def __init__(
self,
lang: str = None,
model_dir: str = None,
spm: bool = True,
laser: str = None,
):
if laser == "laser2" and lang is not None:
warnings.warn(
"Warning: The 'lang' parameter is optional when using 'laser2'. It will be ignored."
)
if laser == "laser3" and lang is None:
raise ValueError("For 'laser3', the 'lang' parameter is required.")
if laser is None and lang is None:
raise ValueError("Either 'laser' or 'lang' should be provided.")
self.tokenizer = initialize_tokenizer(
lang=lang, model_dir=model_dir, laser=laser
)
self.encoder = initialize_encoder(
lang=lang, model_dir=model_dir, spm=spm, laser=laser
)
def encode_sentences(
self, sentences: list, normalize_embeddings: bool = False
) -> list:
"""
Tokenizes and encodes a list of sentences.
Args:
- sentences (list of str): List of sentences to tokenize and encode.
Returns:
- List of embeddings for each sentence.
"""
tokenized_sentences = [
self.tokenizer.tokenize(sentence) for sentence in sentences
]
return self.encoder.encode_sentences(tokenized_sentences, normalize_embeddings)