File size: 35,444 Bytes
dd05f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d5a16
 
dd05f29
 
 
 
eb490a1
 
dd05f29
eb490a1
 
 
 
 
 
 
 
 
 
 
 
dd05f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb490a1
dd05f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57a7224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
946f7f8
dd05f29
 
 
03c399b
dd05f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57a7224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
946f7f8
57a7224
3fcf22b
946f7f8
 
 
dd05f29
57a7224
dd05f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57a7224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
946f7f8
dd05f29
 
 
 
57a7224
dd05f29
 
 
 
 
 
 
 
 
 
 
 
57a7224
dd05f29
 
57a7224
946f7f8
57a7224
3fcf22b
57a7224
 
 
 
 
 
dd05f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba3dd45
dd05f29
 
 
 
 
 
 
 
 
 
946f7f8
dd05f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
946f7f8
dd05f29
 
 
946f7f8
dd05f29
ba3dd45
dd05f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
946f7f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
import openai
from openai import OpenAI
import spacy
import pandas as pd
from collections import defaultdict
import random
import torch
import torch.nn as nn
from transformers import MT5Tokenizer, MT5ForConditionalGeneration
import shutil
import os
import subprocess
import json
from safetensors.torch import load_file
from transformers import AutoTokenizer, AutoModelForCausalLM
from trl import AutoModelForCausalLMWithValueHead
from huggingface_hub import login
import logging
import argparse

lang_map = {
    "English": ("en", "en_core_web_sm"),
    "Russian": ("ru", "ru_core_news_sm"),
    "German": ("de", "de_core_news_sm"),
    "Japanese": ("ja", "ja_core_news_sm"),
    "Korean": ("ko", "ko_core_news_sm"),
    "Spanish": ("es", "es_core_news_sm"),
    "Simplified Chinese": ("zh", "zh_core_web_sm"),
    "Traditional Chinese": ("zh", "zh_core_web_sm")
}

################################# folder / file processing #################################

def clear_folder(folder_path, session_id):
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
        return

    for filename in os.listdir(folder_path):
        if filename.startswith(session_id):
            file_path = os.path.join(folder_path, filename)
            try:
                if os.path.isfile(file_path) or os.path.islink(file_path):
                    os.remove(file_path)
                elif os.path.isdir(file_path):
                    shutil.rmtree(file_path)
            except Exception as e:
                print(f"Failed to delete {file_path}. Reason: {e}")

def delete_files_with_mt(folder_path):
    if not os.path.exists(folder_path):
        print(f"Folder {folder_path} does not exist.")
        return
    for filename in os.listdir(folder_path):
        if "mt" in filename:
            file_path = os.path.join(folder_path, filename)
            try:
                if os.path.isfile(file_path):
                    os.remove(file_path)
                    print(f"Deleted file: {file_path}")
            except Exception as e:
                print(f"Failed to delete {file_path}. Reason: {e}")

################################# reward model for ranking #################################

class metricx_RewardModel:
    def __init__(self):
        self.device = "cuda:0"
        current_dir = os.path.dirname(os.path.abspath(__file__))
        self.json_path = os.path.join(current_dir, f'json_for_metricx')
        if not os.path.exists(self.json_path):
            os.makedirs(self.json_path)

    def get_entry(self, src, mt):
        return {"source": src, "hypothesis": mt, "reference": ""}

    def write_jsonl(self, src_list, mts, session_id):
        with open(os.path.join(self.json_path, f"{session_id}_input.jsonl"), 'w', encoding='utf-8') as output_file:
            for src, mt in zip(src_list, mts):
                entry = self.get_entry(src, mt)
                output_file.write(json.dumps(entry, ensure_ascii=False) + '\n')
                
    def run_command(self, session_id):
        devices_map = {'cuda:0':0, 'cuda:1':1, 'cuda:2':2, 'cuda:3':3}
        command = [
            "python", "-m", "vecalign.metricx24.predict",
            "--tokenizer", "google/mt5-large",
            "--model_name_or_path", "google/metricx-24-hybrid-large-v2p6",
            "--max_input_length", "1536",
            "--batch_size", "1",
            "--input_file", os.path.join(self.json_path, f"{session_id}_input.jsonl"),
            "--output_file", os.path.join(self.json_path, f"{session_id}_output.jsonl"),
            "--device", f"{devices_map.get(self.device, 0)}",
            "--qe"
        ]
        subprocess.run(command)

    def get_predict(self, session_id):
        scores = []
        with open(os.path.join(self.json_path, f"{session_id}_output.jsonl"), 'r', encoding='utf-8') as new_file:
            for line in new_file:
                entry = json.loads(line)
                score = entry.get('prediction', None)
                scores.append(score)
        clear_folder(self.json_path, session_id)
        return scores

    def reward_fn_batch(self, language, src_list, mts, session_id):
        self.write_jsonl(src_list, mts, session_id)
        self.run_command(session_id)
        scores = self.get_predict(session_id)
        rewards = [1 - (score / 25) for score in scores]
        return rewards
    
reward_model = metricx_RewardModel()

def batch_rm_find_best_translation(evals, language, session_id):
    """
    evals: list of (src, [translation1, translation2, ...])
    Return the translation with the highest reward in each group that meets the THRESHOLD, along with its score.
    Otherwise, return (None, score), where score is the highest score in that group.
    """
    src_list = []
    mt_list = []
    counts = []
    for src, translations in evals:
        counts.append(len(translations))
        for mt in translations:
            src_list.append(src)
            mt_list.append(mt)
    rewards = reward_model.reward_fn_batch(language, src_list, mt_list, session_id)
    print("rewards: ", rewards)
    best_translations = []
    index = 0
    for (src, translations), count in zip(evals, counts):
        group_rewards = rewards[index: index+count]
        index += count
        if count < 2:
            if translations:
                best_translations.append((translations[0], group_rewards[0]))
            else:
                best_translations.append((None, None))
        else:
            best_index = group_rewards.index(max(group_rewards))
            best_score = group_rewards[best_index]
            if best_score >= THRESHOLD:
                best_translations.append((translations[best_index], best_score))
            else:
                best_translations.append((None, best_score))
    return best_translations


def external_find_best_translation(evals, language, session_id):
    """
    evals: list of (src, [translation1, translation2, ...])
    Return the translation with the highest reward in each group that meets the THRESHOLD, along with its score.
    Otherwise, return (None, score), where score is the highest score in that group.
    """
    src_list = []
    mt_list = []
    counts = []
    for src, translations in evals:
        counts.append(len(translations))
        for mt in translations:
            src_list.append(src)
            mt_list.append(mt)
    rewards = reward_model.reward_fn_batch(language, src_list, mt_list, session_id)
    print("rewards: ", rewards)
    best_translations = []
    index = 0
    for (src, translations), count in zip(evals, counts):
        group_rewards = rewards[index: index+count]
        index += count
        if count < 2:
            if translations:
                best_translations.append((translations[0], group_rewards[0]))
            else:
                best_translations.append((None, None))
        else:
            best_index = group_rewards.index(max(group_rewards))
            best_score = group_rewards[best_index]
            best_translations.append((translations[best_index], best_score))
    return best_translations

################################# generating translation #################################

# def translate_with_deepinfra(model, tokenizer, device, source_sentence, buffer, good_sent_size, src_language, tgt_language):    
#     system_prompts = [
#         "You are a meticulous translator. Provide a literal, word-for-word translation that preserves the structure and meaning of each individual word.",
#         "You are a professional translator. Deliver a clear, formal, and precise translation that faithfully conveys the original meaning.",
#         "You are a creative and expressive translator. Render the text in a vivid way, as if narrating a captivating story."
#     ]
    
#     context_prompt =  f"Below is a specialized, intermediate translation task. The input text is a mix of {src_language} and partial {tgt_language} translations. "
#     context_prompt += f"In the text, some {src_language} sentences are already followed by preliminary {tgt_language} translations enclosed in parentheses. "
#     context_prompt += f"These provided translations are rough references – they may be incomplete, inconsistent, or not fully aligned with the original meaning.\n\n"
#     context_prompt += f"Your task is to produce an improved {tgt_language} translation according to the following guidelines:\n"
#     context_prompt += f"1. **Refinement:** For sections with existing {tgt_language} translations (in parentheses), refine and polish them so that they are fluent, accurate, and coherent, fully capturing the meaning of the corresponding {src_language} text.\n"
#     context_prompt += f"2. **Completion:** For sections that remain untranslated, translate the {src_language} text accurately and naturally in the specified style.\n"
#     context_prompt += f"3. **Translation Order and Structure Preservation:** Maintain the original order and structure of the text. Every {src_language} sentence must appear in the same sequence as in the source text, with its corresponding {tgt_language} translation (if available) inserted immediately after it. Do not rearrange or reorder any part of the text.\n"
#     context_prompt += f"4. **Consistency:** Ensure a uniform tone and style across the entire translation, adhering to the translator role specified.\n"
#     context_prompt += f"5. **Final Output:** Provide the final output as a single, well-structured {tgt_language} text. Do not include any extraneous commentary, explanations, annotations, or headers – output only the translation in the correct order.\n\n"
#     context_prompt += f"Note: This translation is an intermediate version that may later be merged with other translations. Focus on clarity, coherence, and fidelity to the source text.\n"

#     # Process the buffer to extract relevant English translations
#     processed_source = source_sentence
#     if len(buffer) > 0:
#         selected_keys = random.sample(buffer.keys(), min(len(buffer), good_sent_size))
#         for key_sentence in selected_keys:
#             key_sentence = key_sentence.strip()
#             if key_sentence and (key_sentence in source_sentence) :
#                 translated_sentence =  buffer[key_sentence][0][0]          
#                 if f"\n({translated_sentence})\n" not in processed_source:
#                     processed_source = processed_source.replace(
#                         key_sentence, 
#                         f"{key_sentence}\n({translated_sentence})\n"
#                     )

#     context_prompt += f"\nHere is the input data for translation:\n{processed_source}\n\n"
#     context_prompt += "Apply the above guidelines to produce an improved, coherent translation that strictly follows the original order of the text.\n"
    
#     if len(buffer) == 0:
#         context_prompt = f"### Translate this from {src_language} to {tgt_language} and **only** output the result."
#         context_prompt += f"\n### {src_language}:\n {source_sentence}"
#         context_prompt += f"\n### {tgt_language}:\n"

#     print("--------------------------------------------------------------------------------")
#     print("\n context_prompt \n")
#     print(context_prompt)
#     print("--------------------------------------------------------------------------------")
    
#     translations = []
#     for prompt in system_prompts:
#         messages=[
#             {"role": "system", "content": prompt},
#             {"role": "user", "content": context_prompt}
#         ]
#         inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
#         outputs = model.generate(
#             inputs,
#             max_new_tokens=512,
#             temperature=0.7,
#             top_p=0.9,
#             do_sample=True
#         )
#         translation = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)

#         print("--------------------------------------------------------------------------------")
#         print("\n rollout translation: \n")
#         print(translation)
#         print("--------------------------------------------------------------------------------")

#         translations.append(translation)
    
#     return translations

def translate_with_deepinfra(model, tokenizer, device, source_sentence, buffer, good_sent_size, src_language, tgt_language):    
    system_prompts = [
        "You are a meticulous translator. Provide a literal, word-for-word translation that preserves the structure and meaning of each individual word.",
        "You are a professional translator. Deliver a clear, formal, and precise translation that faithfully conveys the original meaning.",
        "You are a creative and expressive translator. Render the text in a vivid way, as if narrating a captivating story."
    ]
    
    # Process the buffer to extract relevant English translations
    processed_source = source_sentence
    if len(buffer) > 0:
        selected_keys = random.sample(buffer.keys(), min(len(buffer), good_sent_size))
        for key_sentence in selected_keys:
            key_sentence = key_sentence.strip()
            if key_sentence and (key_sentence in source_sentence) :
                translated_sentence =  buffer[key_sentence][0][0]          
                if f"\n({translated_sentence})\n" not in processed_source:
                    processed_source = processed_source.replace(
                        key_sentence, 
                        f"{key_sentence}\n({translated_sentence})\n"
                    )
    
    translations = []
    for system_prompt in system_prompts:
        if len(buffer) == 0:
            full_prompt = (
                f"System: {system_prompt}\n\n"
                f"### Translate this from {src_language} to {tgt_language}.\n"
                f"{src_language}:\n{source_sentence}\n\n"
                f"{tgt_language}:\n"
            )
        else:
            context_prompt = (
                f"Below is a specialized, intermediate translation task. The input text is a mix of {src_language} and partial {tgt_language} translations. "
                f"In the text, some {src_language} sentences are already followed by preliminary {tgt_language} translations enclosed in parentheses. "
                f"These provided translations are rough references - they may be incomplete, inconsistent, or not fully aligned with the original meaning.\n\n"
                f"Your task is to produce an improved {tgt_language} translation according to the following guidelines:\n"
                f"1. Refinement: For sections with existing {tgt_language} translations (in parentheses), refine and polish them.\n"
                f"2. Completion: For untranslated sections, translate the {src_language} text naturally.\n"
                f"3. Translation Order: Maintain the original sequence - every source sentence must appear in order with its translation right after it.\n"
                f"4. Consistency: Ensure a uniform tone and style.\n"
                f"5. Output only the final {tgt_language} translation. No extra commentary.\n\n"
                f"Note: This is an intermediate version that may later be merged. Focus on clarity and fidelity.\n\n"
                f"Input Text:\n{processed_source}\n\n"
                f"Assistant:"
            )

            full_prompt = f"System: {system_prompt}\n\n{context_prompt}"

        print("--------------------------------------------------------------------------------")
        print("\n full_prompt \n")
        print(full_prompt)
        print("--------------------------------------------------------------------------------")

        # Tokenize and generate
        inputs = tokenizer(full_prompt, return_tensors="pt").to(device)
        outputs = model.generate(
            **inputs,
            max_new_tokens=2048,
            temperature=0.7,
            top_p=0.9,
            do_sample=True
        )
        translation = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)

        print("--------------------------------------------------------------------------------")
        print("\n rollout translation: \n")
        print(translation)
        print("--------------------------------------------------------------------------------")

        translations.append(translation)
    
    return translations

def process_buffer_sentences(source_sentences, buffer):
    translations = []    
    translation_map = {}
    for src_key, trans_list in buffer.items():
        if not trans_list or not isinstance(trans_list, list):
            continue
        src_sentences = [src_key]
        
        if len(src_sentences) > 0:
            for src_sent in src_sentences:
                if src_sent not in translation_map:
                    translation_map[src_sent] = []
                translation_map[src_sent] = trans_list[0]
    
    for src_sent in source_sentences:
        if src_sent in translation_map and translation_map[src_sent]:
            translations.append(translation_map[src_sent][0])
    return translations

# def final_translate_with_deepinfra(model, tokenizer, device, source_sentence, source_segments, buffer, src_language, tgt_language):
#     translations = process_buffer_sentences(source_segments, buffer)
#     initial_translation = "\n".join(translations)

#     rewrite_prompt = (
#         f"Below is an initial translation of a {src_language} text into {tgt_language}. "
#         f"This translation may include omissions, inaccuracies, or awkward phrasing. "
#         f"Your task is to produce a refined version that is fluent, accurate, and coherent, "
#         f"while faithfully preserving the full meaning of the original {src_language} text.\n\n"
#         f"### Instructions:\n"
#         f"1. Ensure that every detail in the original {src_language} text is accurately represented.\n"
#         f"2. Correct any grammatical errors, unnatural expressions, or inconsistencies.\n"
#         f"3. Improve the natural flow so that the translation reads as if written by a native speaker.\n"
#         f"4. Do not add, omit, or change any essential details from the source text.\n"
#         f"5. Output only the final refined translation without any additional commentary.\n\n"
#         f"### Original {src_language} Text:\n{source_sentence}\n\n"
#         f"### Initial {tgt_language} Translation:\n{initial_translation}\n\n"
#         f"### Refined Translation:"
#     )

#     print("rewrite prompt:")
#     print(rewrite_prompt)
#     messages=[
#         {"role": "system", "content": "You are a helpful translator and only output the result."},
#         {"role": "user", "content": rewrite_prompt}
#     ]
#     inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
#     outputs = model.generate(
#             inputs,
#             max_new_tokens=512,
#             temperature=0.7,
#             top_p=0.9,
#             do_sample=True
#         )
#     translation = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
#     return translation


def final_translate_with_deepinfra(model, tokenizer, device, source_sentence, source_segments, buffer, src_language, tgt_language):
    translations = process_buffer_sentences(source_segments, buffer)
    initial_translation = "\n".join(translations)

    rewrite_prompt = (
        f"System: You are a helpful translator and only output the result.\n\n"
        f"Below is an initial translation of a {src_language} text into {tgt_language}. "
        f"This translation may include omissions, inaccuracies, or awkward phrasing. "
        f"Your task is to produce a refined version that is fluent, accurate, and coherent, "
        f"while faithfully preserving the full meaning of the original {src_language} text.\n\n"
        f"### Instructions:\n"
        f"1. Ensure that every detail in the original {src_language} text is accurately represented.\n"
        f"2. Correct any grammatical errors, unnatural expressions, or inconsistencies.\n"
        f"3. Improve the natural flow so that the translation reads as if written by a native speaker.\n"
        f"4. Do not add, omit, or change any essential details from the source text.\n"
        f"5. Output only the final refined translation without any additional commentary.\n\n"
        f"### Original {src_language} Text:\n{source_sentence}\n\n"
        f"### Initial {tgt_language} Translation:\n{initial_translation}\n\n"
        f"Assistant:"
    )

    inputs = tokenizer(rewrite_prompt, return_tensors="pt").to(device)
    outputs = model.generate(
        **inputs,
        max_new_tokens=2048,
        temperature=0.7,
        top_p=0.9,
        do_sample=True
    )
    refined_translation = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
    return refined_translation

################################# alignment functions #################################
def save_sentences_to_txt(sentences, filename):
    i = 0
    with open(filename, "w", encoding="utf-8") as file:
        for sentence in sentences:
            print(sentence, i)
            file.write(sentence + "\n")
            i += 1

def segment_sentences_by_punctuation(text, lang):
    segmented_sentences = []
    paragraphs = text.split('\n')
    for paragraph in paragraphs:
        if paragraph.strip():
            if lang == src_lang:
                doc = src_nlp(paragraph)
            if lang == tgt_lang:
                doc = mt_nlp(paragraph)
            for sent in doc.sents:
                segmented_sentences.append(sent.text.strip())
    return segmented_sentences

def generate_overlap_and_embedding(txt_file):
    overlaps_file = txt_file + ".overlaps"
    embed_file = txt_file + ".emb"
    current_dir = os.path.dirname(os.path.abspath(__file__))
    overlap_path = os.path.join(current_dir, "overlap.py")  
    subprocess.run([overlap_path, "-i", txt_file, "-o", overlaps_file, "-n", "10"])
    embed_command = [
        "$LASER/tasks/embed/embed.sh",
        overlaps_file,
        embed_file,
    ]
    subprocess.run(" ".join(embed_command), shell=True)
    return overlaps_file, embed_file

def run_vecalign(src_txt, tgt_txt, src_embed, tgt_embed):
    current_dir = os.path.dirname(os.path.abspath(__file__))
    vecalign_path = os.path.join(current_dir, "vecalign.py")
    result = subprocess.run(
        [
            "python", 
            vecalign_path,
            "--alignment_max_size", "8",
            "--src", src_txt,
            "--tgt", tgt_txt,
            "--src_embed", src_txt + ".overlaps", src_embed,
            "--tgt_embed", tgt_txt + ".overlaps", tgt_embed,
        ],
        stdout=subprocess.PIPE,
        text=True,
    )
    alignments = []
    for line in result.stdout.strip().split("\n"):
        if line:
            src_indices, tgt_indices, _ = line.split(":")
            src_indices = list(map(int, src_indices.strip("[]").split(","))) if src_indices.strip("[]") else []
            tgt_indices = list(map(int, tgt_indices.strip("[]").split(","))) if tgt_indices.strip("[]") else []
            alignments.append((src_indices, tgt_indices))
    return alignments

def compute_alignment_stats(alignment_results):
    costs = []
    zero_cost_count = 0

    for entry in alignment_results:
        try:
            cost = float(entry.split(":")[-1])  # Extract the cost value
            if cost == 0.0:
                zero_cost_count += 1
            else:
                costs.append(cost)
        except ValueError:
            continue  # Ignore invalid entries
    
    # Compute the average cost, ignoring zero-cost samples
    avg_cost = sum(costs) / len(costs) if costs else 0.0
    zero_cost_ratio = zero_cost_count / len(alignment_results) if alignment_results else 0.0

    return avg_cost, zero_cost_ratio

def run_vecalign_explore(src_txt, tgt_txt, src_embed, tgt_embed):
    """
    Runs vecalign multiple times, exploring the best del_percentile_frac.
    Starts from 0.2 and decreases in 0.005 steps, stopping when zero-cost ratio increases sharply.
    
    :param src_txt: Source text file
    :param tgt_txt: Target text file
    :param src_embed: Source embeddings file
    :param tgt_embed: Target embeddings file
    :return: (best_del_percentile_frac, best_avg_cost, best_zero_cost_ratio, best_alignments)
    """
    del_percentile_frac = 0.2  # Starting value
    step_size = 0.005  # Exploration step
    prev_zero_cost_ratio = None
    prev_avg_cost = None

    best_avg_cost = float('inf')
    best_del_percentile_frac = del_percentile_frac
    best_zero_cost_ratio = 0.0
    best_alignments = []

    first_flag = True
    first_zero_cost_ratio = 0.0
    
    current_dir = os.path.dirname(os.path.abspath(__file__))
    vecalign_path = os.path.join(current_dir, "vecalign.py")

    while del_percentile_frac > 0:
        result = subprocess.run(
            [
                "python", 
                vecalign_path,
                "--alignment_max_size", "8",
                "--del_percentile_frac", str(del_percentile_frac),
                "--src", src_txt,
                "--tgt", tgt_txt,
                "--costs_sample_size", "200000", 
                "--search_buffer_size", "20",
                "--src_embed", src_txt + ".overlaps", src_embed,
                "--tgt_embed", tgt_txt + ".overlaps", tgt_embed,
            ],
            stdout=subprocess.PIPE,
            text=True,
        )

        output_lines = result.stdout.strip().split("\n")
        avg_cost, zero_cost_ratio = compute_alignment_stats(output_lines)

        print(f"del_percentile_frac: {del_percentile_frac:.3f} | Avg Cost: {avg_cost:.6f} | Zero-Cost Ratio: {zero_cost_ratio:.6%}")

        if first_flag:
            first_zero_cost_ratio = zero_cost_ratio
            first_flag = False        

        if prev_zero_cost_ratio != 0 and prev_zero_cost_ratio is not None and (zero_cost_ratio / prev_zero_cost_ratio) > 1.5:
            print(f"Stopping exploration: Zero-cost ratio increased sharply at {del_percentile_frac:.3f}")
            break
        elif prev_zero_cost_ratio is not None and (
            (zero_cost_ratio - prev_zero_cost_ratio) > 0.15  or
            avg_cost > prev_avg_cost or
            avg_cost < 0.3 or zero_cost_ratio > 0.7
        ):
            print(f"Stopping exploration: Zero-cost ratio increased sharply at {del_percentile_frac:.3f}")
            break
        else:
            if avg_cost < best_avg_cost:
                best_avg_cost = avg_cost
                best_del_percentile_frac = del_percentile_frac
                best_zero_cost_ratio = zero_cost_ratio
                best_alignments = output_lines
        
        prev_zero_cost_ratio = zero_cost_ratio
        prev_avg_cost = avg_cost
        del_percentile_frac -= step_size

    final_avg_cost = best_avg_cost
    final_zero_cost_ratio = best_zero_cost_ratio 
    final_del_percentile_frac = best_del_percentile_frac
    final_alignments = best_alignments.copy()

    parsed_alignments = []
    for line in final_alignments:
        if line:
            src_indices, tgt_indices, _ = line.split(":")
            src_indices = list(map(int, src_indices.strip("[]").split(","))) if src_indices.strip("[]") else []
            tgt_indices = list(map(int, tgt_indices.strip("[]").split(","))) if tgt_indices.strip("[]") else []
            parsed_alignments.append((src_indices, tgt_indices))

    print("\nBest Found:")
    print(f"del_percentile_frac: {final_del_percentile_frac:.3f} | Avg Cost: {final_avg_cost:.6f} | Zero-Cost Ratio: {final_zero_cost_ratio:.6%}")

    return parsed_alignments

def standardize_common_alignments(common_alignments_list):
    # Reference alignment for standardization (use the shortest alignment set as baseline)
    reference_alignments = min(common_alignments_list, key=lambda alignments: len(alignments))

    # Standardized results to return
    standardized_results = []

    for alignments in common_alignments_list:
        standardized_alignment = []
        mt_idx_map = {tuple(src): mt for src, mt in alignments}
        for src_indices, _ in reference_alignments:  # Ignore ref_indices as it no longer exists
            # If src_indices exist in the current alignment, use them directly
            if tuple(src_indices) in mt_idx_map:
                mt_indices = mt_idx_map[tuple(src_indices)]
            else:
                # If not found, merge based on src alignment
                mt_indices = []
                for src in src_indices:
                    if (src,) in mt_idx_map:
                        mt_indices.extend(mt_idx_map[(src,)])
                # Ensure indices are unique and sorted after merging
                mt_indices = sorted(set(mt_indices))
            standardized_alignment.append((src_indices, mt_indices))
        standardized_results.append(standardized_alignment)
    return standardized_results

def generate_windows(source, translations):
    # Segment sentences
    source_segments = segment_sentences_by_punctuation(source, lang=src_lang)   
    current_dir = os.path.dirname(os.path.abspath(__file__))
    temp_folder = os.path.join(current_dir, "temp")
    os.makedirs(temp_folder, exist_ok=True)
    # Generate overlaps and embeddings
    src_txt = os.path.join(current_dir, f"temp/{SESSION_ID}_src.txt")
    mt_txt = os.path.join(current_dir, f"temp/{SESSION_ID}_mt.txt")

    print("\n ----------------- source segmentation --------------------------- ")
    save_sentences_to_txt(source_segments, src_txt)
    print(" -------------------------------------------------------------------  \n")
    _, src_embed = generate_overlap_and_embedding(src_txt)
    mt_segments_list = [segment_sentences_by_punctuation(t, lang=tgt_lang) for t in translations]
    adjusted_mt_list = []
    
    common_alignments_list = []
    for mt_segments in mt_segments_list:
        print("\n ----------------- translation segmentation --------------------------- ")
        save_sentences_to_txt(mt_segments, mt_txt)
        print(" ------------------------------------------------------------------------  \n")
        _, mt_embed = generate_overlap_and_embedding(mt_txt)
        src_mt_alignments = run_vecalign_explore(src_txt, mt_txt, src_embed, mt_embed) # run_vecalign_explore, run_vecalign
        common_alignments_list.append(src_mt_alignments.copy())
        delete_files_with_mt(temp_folder)
    
    common_alignments_list = standardize_common_alignments(common_alignments_list)

    mt_index = 0
   
    for common_alignments in common_alignments_list:
        adjusted_src = []
        adjusted_mt = []
        for src_indices, mt_indices in common_alignments:
            mt_indices = [x for x in mt_indices if x != -1]
            
            if len(src_indices) == 0:
                continue
            else:
                aligned_src = " ".join([source_segments[i] for i in src_indices])
            
            if len(mt_indices) > 0:
                aligned_mt = " ".join([mt_segments_list[mt_index][i] for i in mt_indices])
            else:
                aligned_mt = ""
            
            adjusted_src.append(aligned_src)
            adjusted_mt.append(aligned_mt)

        adjusted_mt_list.append(adjusted_mt.copy())
        mt_index += 1
    
    clear_folder(temp_folder, SESSION_ID)
    return adjusted_src, adjusted_mt_list

################################# main function #################################

def get_lang_and_nlp(language):
    if language not in lang_map:
        raise ValueError(f"Unsupported language: {language}")
    lang_code, model_name = lang_map[language]
    return lang_code, spacy.load(model_name)

def translate_text(text, session_id, model, tokenizer, device,
                            src_language="Japanese", 
                            task_language="English", 
                            max_iterations_value=3, 
                            threshold_value=0.7, 
                            good_ref_contexts_num_value=5, 
                            reward_model_type='metricx'):

    global SRC_LANGUAGE, TASK_LANGUAGE, max_iterations, stop_memory
    global THRESHOLD, good_ref_contexts_num, src_lang, src_nlp, tgt_lang, mt_nlp
    global reward_model, MEMORY_FOLDER, SESSION_ID
    
    SESSION_ID = session_id
    print("SESSION_ID: ", SESSION_ID)
    
    MEMORY_FOLDER = "external_translation_memory"
    SRC_LANGUAGE = src_language
    TASK_LANGUAGE = task_language
    max_iterations = max_iterations_value
    stop_memory = list(range(1, max_iterations))
    THRESHOLD = threshold_value
    good_ref_contexts_num = good_ref_contexts_num_value

    import torch
    device = torch.device(f"cuda:0" if torch.cuda.is_available() else "cpu")
    src_lang, src_nlp = get_lang_and_nlp(SRC_LANGUAGE)
    tgt_lang, mt_nlp = get_lang_and_nlp(TASK_LANGUAGE)

    reward_model = metricx_RewardModel()
    
    from collections import defaultdict
    buffer = defaultdict(list)
    source_sentence = text.replace("\n", " ")
    source_segments = segment_sentences_by_punctuation(source_sentence, lang=src_lang)
    final_translations = None

    for iteration in range(max_iterations):
        if iteration in stop_memory:
            final_translations = final_translate_with_deepinfra(model, tokenizer, device, source_sentence, source_segments, buffer, SRC_LANGUAGE, TASK_LANGUAGE)
        if iteration == max_iterations - 1:
            break
        else:
            translations = translate_with_deepinfra(model, tokenizer, device, source_sentence, buffer, good_ref_contexts_num + iteration, SRC_LANGUAGE, TASK_LANGUAGE)
        
        src_windows, mt_windows_list = generate_windows(source_sentence, translations)
        # print("Evaluate translations and update buffer ..............")

        src_context_list = list(src_windows)
        candidates_list = []
        for window_index in range(len(src_windows)):
            candidates = [mt_windows[window_index] for mt_windows in mt_windows_list]
            candidates_list.append(candidates)

        best_candidate_results = batch_rm_find_best_translation(list(zip(src_context_list, candidates_list)), TASK_LANGUAGE, SESSION_ID)

        # print("\n Best candidate results:")
        # print(best_candidate_results)
        # print(" ------------------------------------------------------------------------\n")

        for i, src in enumerate(src_context_list):
            best_tuple = best_candidate_results[i]
            if best_tuple[0] is not None:
                if src not in buffer:
                    buffer[src] = [best_tuple]
                    # print(f"[ADD] New Source '{src}' Add Translation: '{best_tuple[0]}', Score: {best_tuple[1]}")
                else:
                    buffer[src].append(best_tuple)
                    # print(f"[ADD] Source '{src}' Add Translation: '{best_tuple[0]}', Score: {best_tuple[1]}")
                buffer[src].sort(key=lambda x: x[1], reverse=True)
                # print(f"[UPDATE] Source '{src}' Best Translation: '{buffer[src][0][0]}'")

        # print("\n===== Buffer state =====")
        for src, translations in buffer.items():
            print(f"Source '{src}': {[t[0] for t in translations]}")
    
    # print("Final Translation:")
    # print(final_translations)
    return final_translations