File size: 43,084 Bytes
dd05f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
#!/usr/bin/env python3
"""
Long Context Evaluation

This script performs the following steps:
  1. Reads a specified CSV file containing the evaluation data.
  2. Segments source, reference, and MT texts into sentences and sliding windows.
  3. Generates overlaps and embeddings for alignment.
  4. Runs vector alignment exploration and computes COMET and COMET-QE scores.
  5. Aggregates the scores and saves the results.
"""

import os
import re
import json
import csv
import spacy
import torch
import random
import argparse
import numpy as np
import pandas as pd
import tempfile
import subprocess
import unicodedata
from multiprocessing import Pool
import datetime
from typing import Optional

# -----------------------------------------------------------------------------
# Utility Functions
# -----------------------------------------------------------------------------
def set_seed(seed: int = 42) -> None:
    """
    Set the global random seed for reproducibility.

    Args:
        seed (int): Random seed (default is 42).
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def normalize_text(text: str) -> str:
    """
    Normalize text using Unicode normalization (NFKC) to convert full-width characters to half-width.
    Additional normalization (e.g., lowercasing) can be added if needed.

    Args:
        text (str): Input text.

    Returns:
        str: Normalized text.
    """
    normalized = unicodedata.normalize("NFKC", text)
    # Uncomment the following if lowercase conversion is desired:
    # normalized = normalized.lower()
    return normalized


def segment_sentences_by_punctuation(text: str, lang: str) -> list:
    """
    Segment text into sentences based on punctuation and add an end-of-sentence separator.

    Args:
        text (str): Input text (may contain multiple paragraphs).
        lang (str): Language code (e.g., "zh", "en", "ru", "de").

    Returns:
        list: List of segmented sentences with the SEPARATOR appended.
    """
    segmented_sentences = []
    paragraphs = text.split('\n')
    for paragraph in paragraphs:
        if paragraph.strip():
            if lang == SRC_LANG:
                doc = src_nlp(paragraph)
            else:
                doc = mt_nlp(paragraph)
            for sent in doc.sents:
                segmented_sentences.append(normalize_text(sent.text.strip()) + SEPARATOR)
    return segmented_sentences


def preprocess_sentences(sentences: list) -> str:
    """
    Preprocess sentences by removing the end-of-sentence token and joining them with newline characters.

    Args:
        sentences (list): List of sentences.

    Returns:
        str: Preprocessed text.
    """
    processed = [sentence.replace(SEPARATOR, "").strip() for sentence in sentences]
    return "\n".join(processed)


def generate_overlap_and_embedding(text: str) -> tuple:
    """
    Generate overlap and embedding data from text using temporary files.

    Args:
        text (str): Input text.

    Returns:
        tuple: (overlap_content (str), embeddings_content (bytes))
    """
    with tempfile.NamedTemporaryFile(delete=True, mode="w+", encoding="utf-8", suffix=".txt") as txt_file:
        txt_file.write(text)
        txt_file.flush()
        txt_filename = txt_file.name
        overlaps_file = txt_filename + ".overlaps"
        embed_file = txt_filename + ".emb"

        # Generate overlap data
        subprocess.run(["./overlap.py", "-i", txt_filename, "-o", overlaps_file, "-n", "10"], check=True)
        # Generate embedding data
        subprocess.run(" ".join(["$LASER/tasks/embed/embed.sh", overlaps_file, embed_file]),
                       shell=True, check=True)

        with open(embed_file, "rb") as f:
            embeddings_content = f.read()
        with open(overlaps_file, "r", encoding="utf-8") as f:
            overlap_content = f.read()

    for need_to_del_file in [overlaps_file, embed_file]:
        try:
            os.remove(need_to_del_file)
            print(f"Removed file: {need_to_del_file}")
        except Exception as e:
            print(f"Error removing {need_to_del_file}: {e}")

    return overlap_content, embeddings_content


def compute_alignment_stats(alignment_results: list) -> tuple:
    """
    Compute the average alignment cost (ignoring zero-cost alignments) and the zero-cost ratio.

    Args:
        alignment_results (list): List of alignment result strings in the format "[src]:[tgt]:cost".

    Returns:
        tuple: (average_cost (float), zero_cost_ratio (float))
    """
    costs = []
    zero_cost_count = 0

    for entry in alignment_results:
        try:
            cost = float(entry.split(":")[-1])
            if cost == 0.0:
                zero_cost_count += 1
            else:
                costs.append(cost)
        except ValueError:
            continue

    avg_cost = sum(costs) / len(costs) if costs else 0.0
    zero_cost_ratio = zero_cost_count / len(alignment_results) if alignment_results else 0.0

    return avg_cost, zero_cost_ratio


def run_vecalign_explore(src_text: str, tgt_text: str, src_overlap: str, tgt_overlap: str,
                         src_embed: bytes, tgt_embed: bytes) -> list:
    """
    Explore the best vector alignment parameters and return the best alignments.

    Args:
        src_text (str): Source text.
        tgt_text (str): Target text.
        src_overlap (str): Overlap data for the source.
        tgt_overlap (str): Overlap data for the target.
        src_embed (bytes): Embedding data for the source.
        tgt_embed (bytes): Embedding data for the target.

    Returns:
        list: Parsed best alignments as a list of tuples [(src_indices, tgt_indices), ...].
    """
    del_percentile_frac = 0.2
    step_size = 0.005
    prev_zero_cost_ratio = None
    prev_avg_cost = None

    best_avg_cost = float('inf')
    best_del_percentile_frac = del_percentile_frac
    best_zero_cost_ratio = 0.0
    best_alignments = []

    first_flag = True

    with tempfile.NamedTemporaryFile(delete=True, mode="w+", encoding="utf-8", suffix=".txt") as src_file, \
         tempfile.NamedTemporaryFile(delete=True, mode="w+", encoding="utf-8", suffix=".txt") as tgt_file, \
         tempfile.NamedTemporaryFile(delete=True, mode="w+", encoding="utf-8", suffix=".overlaps") as src_overlap_file, \
         tempfile.NamedTemporaryFile(delete=True, mode="w+", encoding="utf-8", suffix=".overlaps") as tgt_overlap_file, \
         tempfile.NamedTemporaryFile(delete=True, mode="wb", suffix=".emb") as src_embed_file, \
         tempfile.NamedTemporaryFile(delete=True, mode="wb", suffix=".emb") as tgt_embed_file:

        src_file.write(src_text)
        src_file.flush()
        tgt_file.write(tgt_text)
        tgt_file.flush()

        src_overlap_file.write(src_overlap)
        src_overlap_file.flush()
        tgt_overlap_file.write(tgt_overlap)
        tgt_overlap_file.flush()

        src_embed_file.write(src_embed)
        src_embed_file.flush()
        tgt_embed_file.write(tgt_embed)
        tgt_embed_file.flush()

        while del_percentile_frac > 0:
            result = subprocess.run(
                [
                    "./vecalign.py",
                    "--alignment_max_size", "8",
                    "--del_percentile_frac", str(del_percentile_frac),
                    "--src", src_file.name,
                    "--tgt", tgt_file.name,
                    "--src_embed", src_overlap_file.name, src_embed_file.name,
                    "--tgt_embed", tgt_overlap_file.name, tgt_embed_file.name,
                ],
                stdout=subprocess.PIPE,
                text=True,
            )

            output_lines = result.stdout.strip().split("\n")
            avg_cost, zero_cost_ratio = compute_alignment_stats(output_lines)
            print(f"del_percentile_frac: {del_percentile_frac:.3f} | Avg Cost: {avg_cost:.6f} | Zero-Cost Ratio: {zero_cost_ratio:.2%}")

            if first_flag:
                first_flag = False

            if prev_zero_cost_ratio is not None and prev_zero_cost_ratio != 0 and (zero_cost_ratio / prev_zero_cost_ratio) > 1.5:
                print(f"Stopping exploration: Zero-cost ratio increased sharply at {del_percentile_frac:.3f}")
                break
            elif prev_zero_cost_ratio is not None and (
                (zero_cost_ratio - prev_zero_cost_ratio) > 0.15 or
                avg_cost > prev_avg_cost or
                avg_cost < 0.3 or zero_cost_ratio > 0.7
            ):
                print(f"Stopping exploration: Zero-cost ratio increased sharply at {del_percentile_frac:.3f}")
                break
            else:
                if avg_cost < best_avg_cost:
                    best_avg_cost = avg_cost
                    best_del_percentile_frac = del_percentile_frac
                    best_zero_cost_ratio = zero_cost_ratio
                    best_alignments = output_lines

            prev_zero_cost_ratio = zero_cost_ratio
            prev_avg_cost = avg_cost
            del_percentile_frac -= step_size

    # Parse the best alignments
    parsed_alignments = []
    for line in best_alignments:
        if line:
            src_part, tgt_part, _ = line.split(":")
            src_indices = list(map(int, src_part.strip("[]").split(","))) if src_part.strip("[]") else []
            tgt_indices = list(map(int, tgt_part.strip("[]").split(","))) if tgt_part.strip("[]") else []
            parsed_alignments.append((src_indices, tgt_indices))

    print("\nBest Found:")
    print(f"del_percentile_frac: {best_del_percentile_frac:.3f} | Avg Cost: {best_avg_cost:.6f} | Zero-Cost Ratio: {best_zero_cost_ratio:.2%}")
    return parsed_alignments


def clean_sentence(sentence: str) -> str:
    """
    Clean a sentence by removing duplicate parts and reconnecting with the separator.

    Args:
        sentence (str): Input sentence.

    Returns:
        str: Cleaned sentence.
    """
    if not sentence:
        return ""
    parts = sentence.split(SEPARATOR)
    unique_parts = list(dict.fromkeys(part.strip() for part in parts if part.strip()))
    return f" {SEPARATOR} ".join(unique_parts) + f" {SEPARATOR}"


def sliding_windows(sentences: list, window_size: int) -> list:
    """
    Create sliding windows from a list of sentences.

    Args:
        sentences (list): List of sentences.
        window_size (int): Window size.

    Returns:
        list: List of sliding windows (each is a list of sentences).
    """
    windows = []
    for i in range(len(sentences) - window_size + 1):
        window = [clean_sentence(s) for s in sentences[i:i + window_size]]
        # Remove duplicate window contents
        unique_window = list(dict.fromkeys(window))
        windows.append(unique_window)
    return windows


def save_windows_to_file(paragraph_id: int, aligned_src: list, aligned_ref: list, aligned_mt: list,
                         src_windows: list, ref_windows: list, mt_windows: list,
                         qe_src_windows: list, qe_mt_windows: list, output_dir: str,
                         output_name: str) -> None:
    """
    Save window information and alignment data as JSON files.

    Args:
        paragraph_id (int): Paragraph ID.
        aligned_src (list): Adjusted source alignment.
        aligned_ref (list): Adjusted reference alignment.
        aligned_mt (list): Adjusted MT alignment.
        src_windows (list): Source sliding windows.
        ref_windows (list): Reference sliding windows.
        mt_windows (list): MT sliding windows.
        qe_src_windows (list): QE source sliding windows.
        qe_mt_windows (list): QE MT sliding windows.
        output_dir (str): Output directory path.
        output_name (str): Identifier for the output file.
    """
    os.makedirs(output_dir, exist_ok=True)

    windows_data = {
        "paragraph_id": paragraph_id,
        "src_windows": src_windows,
        "ref_windows": ref_windows,
        "mt_windows": mt_windows,
    }
    windows_file = os.path.join(output_dir, f"windows_{paragraph_id}_{output_name}.json")
    with open(windows_file, "w", encoding="utf-8") as f:
        json.dump(windows_data, f, ensure_ascii=False, indent=2)

    qe_windows_data = {
        "paragraph_id": paragraph_id,
        "src_windows": qe_src_windows,
        "mt_windows": qe_mt_windows,
    }
    qe_windows_file = os.path.join(output_dir, f"qe_windows_{paragraph_id}_{output_name}.json")
    with open(qe_windows_file, "w", encoding="utf-8") as f:
        json.dump(qe_windows_data, f, ensure_ascii=False, indent=2)

    aligned_info = {
        "src": aligned_src,
        "ref": aligned_ref,
        "mt": aligned_mt,
    }
    aligned_file = os.path.join(output_dir, f"aligned_{paragraph_id}_{output_name}.json")
    with open(aligned_file, "w", encoding="utf-8") as f:
        json.dump(aligned_info, f, ensure_ascii=False, indent=2)


# -----------------------------------------------------------------------------
# Alignment Gap Processing Functions
# -----------------------------------------------------------------------------
def process_gaps(alignments: list) -> tuple:
    """
    Process alignment list blocks where the source is empty but target is non-empty,
    converting them into gap alignments (source converted to a negative gap key).

    Args:
        alignments (list): Original alignment list (each element is (src_indices, tgt_indices)).

    Returns:
        tuple: (new_alignments (list), gap_counts (dict))
    """
    new_alignments = []
    gap_counts = {}
    n = len(alignments)
    i = 0
    while i < n:
        src, tgt = alignments[i]
        if not src and tgt:
            block = []
            while i < n and not alignments[i][0] and alignments[i][1]:
                block.append(alignments[i])
                i += 1
            # Get the left neighbor's source index if available
            left_src = new_alignments[-1][0][-1] if new_alignments and new_alignments[-1][0] else None
            # Get the first non-empty source index on the right
            right_src = None
            j = i
            while j < n:
                if alignments[j][0]:
                    right_src = alignments[j][0][0]
                    break
                j += 1
            gap_key = left_src if left_src is not None else (right_src - 1 if right_src is not None else 0)
            for item in block:
                new_alignments.append(([-gap_key], item[1]))
            gap_counts[gap_key] = gap_counts.get(gap_key, 0) + len(block)
        else:
            new_alignments.append(alignments[i])
            i += 1
    return new_alignments, gap_counts


def complement_gaps(processed: list, gap_counts: dict, desired_gaps: dict) -> list:
    """
    Complement the gaps in the processed alignment list by inserting dummy alignments until
    the desired gap count is met.

    Args:
        processed (list): Processed alignment list.
        gap_counts (dict): Counts of each gap key in the processed list.
        desired_gaps (dict): Desired counts for each gap key from the other alignment list.

    Returns:
        list: Processed alignment list after gap completion.
    """
    all_keys = set(gap_counts.keys()) | set(desired_gaps.keys())
    for gap in all_keys:
        current = gap_counts.get(gap, 0)
        desired = desired_gaps.get(gap, 0)
        if current < desired:
            indices = [i for i, (src, _) in enumerate(processed) if src and src[0] == -gap]
            insert_idx = indices[0] if indices else next((i for i, (src, _) in enumerate(processed) if src and src[0] > gap), len(processed))
            for _ in range(desired - current):
                processed.insert(insert_idx, ([-gap], []))
            gap_counts[gap] = desired
    return processed


def custom_sort_key(item: tuple) -> tuple:
    """
    Custom sort key:
      - For non-gap alignments (positive), key = (source, 0).
      - For gap alignments (negative), key = (abs(source), 1).

    Args:
        item (tuple): Alignment tuple (src_indices, tgt_indices).

    Returns:
        tuple: Sorting key.
    """
    src, _ = item
    if src:
        val = src[0]
        return (val, 0) if val >= 0 else (abs(val), 1)
    return (float('inf'), 2)


def fill_empty_alignments(src_ref_alignments: list, src_mt_alignments: list) -> tuple:
    """
    Fill the empty alignments (gaps) in both source-reference and source-MT alignments so that
    the gap key counts match, then sort them.

    Args:
        src_ref_alignments (list): Alignment list for source-reference.
        src_mt_alignments (list): Alignment list for source-MT.

    Returns:
        tuple: (filled_src_ref_alignments, filled_src_mt_alignments)
    """
    proc_ref, gaps_ref = process_gaps(src_ref_alignments)
    proc_mt, gaps_mt = process_gaps(src_mt_alignments)
    proc_ref = complement_gaps(proc_ref, gaps_ref, gaps_mt)
    proc_mt = complement_gaps(proc_mt, gaps_mt, gaps_ref)
    proc_ref.sort(key=custom_sort_key)
    proc_mt.sort(key=custom_sort_key)
    return proc_ref, proc_mt


def find_common_alignments(src_ref_alignments: list, src_mt_alignments: list) -> list:
    """
    Find common alignments between source-reference and source-MT alignment lists and remove duplicates.

    Args:
        src_ref_alignments (list): Alignment list for source-reference.
        src_mt_alignments (list): Alignment list for source-MT.

    Returns:
        list: List of common alignments as (common_src_indices, common_ref_indices, common_mt_indices).
    """
    common_alignments = []
    src_ref_alignments, src_mt_alignments = fill_empty_alignments(src_ref_alignments, src_mt_alignments)

    for ref_align in src_ref_alignments:
        for mt_align in src_mt_alignments:
            common_src = sorted(list(set(ref_align[0]) & set(mt_align[0])))
            if common_src:
                common_ref = sorted(list(set(ref_align[1]))) if ref_align[1] else [-1]
                common_mt = sorted(list(set(mt_align[1]))) if mt_align[1] else [-1]
                common_alignments.append((common_src, common_ref, common_mt))

    # Remove duplicate triples
    unique = []
    seen = set()
    for triple in common_alignments:
        key = (tuple(triple[0]), tuple(triple[1]), tuple(triple[2]))
        if key not in seen:
            seen.add(key)
            unique.append(triple)
    print("Unique common alignments:")
    print(unique)
    return unique


def args_to_dict(args: argparse.Namespace, prefix: str, strip_prefix: bool = False) -> dict:
    """
    Convert an argparse Namespace to a dictionary, optionally filtering by a prefix and stripping it.

    Args:
        args (argparse.Namespace): Input arguments.
        prefix (str): Prefix to filter keys.
        strip_prefix (bool): Whether to remove the prefix from keys (default is False).

    Returns:
        dict: Filtered dictionary.
    """
    d = vars(args)
    prefix_key = prefix + '_'
    filtered = {k: v for k, v in d.items() if k.startswith(prefix_key)}
    if strip_prefix:
        return {k[len(prefix_key):]: v for k, v in filtered.items()}
    return filtered


# -----------------------------------------------------------------------------
# Metrics Computation
# -----------------------------------------------------------------------------
def compute_metrics(paragraph_src: str, paragraph_ref: str, paragraph_mt: str,
                    src_windows: list, ref_windows: list, mt_windows: list,
                    qe_src_windows: list, qe_mt_windows: list,
                    paragraph_id: int, mt_col: str) -> dict:
    """
    Compute COMET and COMET-QE scores, then save the scores and related window information as a JSON file.

    Args:
        paragraph_src (str): Source paragraph text.
        paragraph_ref (str): Reference paragraph text.
        paragraph_mt (str): MT paragraph text.
        bleu_adjusted_ref: (Placeholder) BLEU adjusted parameter.
        bleu_adjusted_mt: (Placeholder) BLEU adjusted parameter.
        src_windows (list): Source sliding windows.
        ref_windows (list): Reference sliding windows.
        mt_windows (list): MT sliding windows.
        qe_src_windows (list): QE source sliding windows.
        qe_mt_windows (list): QE MT sliding windows.
        paragraph_id (int): Paragraph ID.
        mt_col (str): MT column name.

    Returns:
        dict: Dictionary containing various computed scores.
    """
    comet_zero_score_windows = []
    comet_qe_zero_score_windows = []

    with tempfile.NamedTemporaryFile(mode='w+', delete=True) as src_file, \
         tempfile.NamedTemporaryFile(mode='w+', delete=True) as ref_file, \
         tempfile.NamedTemporaryFile(mode='w+', delete=True) as mt_file, \
         tempfile.NamedTemporaryFile(mode='w+', delete=True) as qe_src_file, \
         tempfile.NamedTemporaryFile(mode='w+', delete=True) as qe_mt_file:

        # Write each window on a separate line
        for idx, (src_win, ref_win, mt_win) in enumerate(zip(src_windows, ref_windows, mt_windows)):
            src_line = " ".join(src_win)
            ref_line = " ".join(ref_win)
            mt_line = " ".join(mt_win)
            if src_line and mt_line:
                src_file.write(src_line + "\n")
                ref_file.write(ref_line + "\n")
                mt_file.write(mt_line + "\n")
            else:
                comet_zero_score_windows.append(idx)

        src_file.flush()
        ref_file.flush()
        mt_file.flush()

        comet_command = [
            "comet-score",
            "-s", src_file.name,
            "-t", mt_file.name,
            "-r", ref_file.name,
            "--model", COMET_MODEL,
            "--enable-context",
            "--gpus", GPU_ID,
            "--quiet",
        ]
        result = subprocess.run(comet_command, stdout=subprocess.PIPE, text=True)
        print(result.stdout)
        comet_scores = [float(s) for s in re.findall(r"score:\s(-?[0-9.]+)", result.stdout.strip())][:-1]

        for idx, (src_win, mt_win) in enumerate(zip(qe_src_windows, qe_mt_windows)):
            src_line = " ".join(src_win)
            mt_line = " ".join(mt_win)
            if src_line and mt_line:
                qe_src_file.write(src_line + "\n")
                qe_mt_file.write(mt_line + "\n")
            else:
                comet_qe_zero_score_windows.append(idx)

        qe_src_file.flush()
        qe_mt_file.flush()

        qe_command = [
            "comet-score",
            "-s", qe_src_file.name,
            "-t", qe_mt_file.name,
            "--model", COMET_QE_MODEL,
            "--enable-context",
            "--gpus", GPU_ID,
            "--quiet",
        ]
        qe_result = subprocess.run(qe_command, stdout=subprocess.PIPE, text=True)
        print(qe_result.stdout)
        comet_qe_scores = [float(s) for s in re.findall(r"score:\s(-?[0-9.]+)", qe_result.stdout.strip())][:-1]

    # Insert zero scores for windows that had missing scores
    for idx in comet_zero_score_windows:
        comet_scores.insert(idx, 0.0)
    for idx in comet_qe_zero_score_windows:
        comet_qe_scores.insert(idx, 0.0)

    # Placeholder values for sentence-level metrics
    sentences_length = len(paragraph_mt.splitlines())
    sentences_zero_ratio = 0.0

    scores_data = {
        'paragraph_id': paragraph_id,
        'comet_scores': comet_scores,
        'comet_qe_scores': comet_qe_scores,
        'sentences_length': sentences_length,
        'windows_length': len(comet_scores),
        'windows_qe_length': len(comet_qe_scores),
        'sentences_zero_ratio': sentences_zero_ratio,
        'windows_zero_ratio': len(comet_zero_score_windows) / len(comet_scores) if comet_scores else 0,
        'windows_qe_zero_ratio': len(comet_qe_zero_score_windows) / len(comet_qe_scores) if comet_qe_scores else 0,
        'avg_comet': sum(comet_scores) / len(comet_scores) if comet_scores else 0,
        'avg_comet_qe': sum(comet_qe_scores) / len(comet_qe_scores) if comet_qe_scores else 0
    }

    scores_file = os.path.join(SAVE_FOLDER, 'scores', f'scores_{paragraph_id}_{mt_col}.json')
    os.makedirs(os.path.dirname(scores_file), exist_ok=True)
    with open(scores_file, 'w', encoding='utf-8') as f:
        json.dump(scores_data, f, ensure_ascii=False, indent=2)

    return scores_data


def compute_metrics_reference_free(src_windows: list, mt_windows: list,
                                   qe_src_windows: list, qe_mt_windows: list,
                                   paragraph_id: int, mt_col: str) -> dict:
    """
    Compute reference-free evaluation metrics (only QE scores) when no reference is provided.

    Args:
        src_windows (list): (Unused) Source sliding windows.
        mt_windows (list): (Unused) MT sliding windows.
        qe_src_windows (list): QE source sliding windows.
        qe_mt_windows (list): QE MT sliding windows.
        paragraph_id (int): Paragraph ID.
        mt_col (str): MT column name.

    Returns:
        dict: Dictionary containing computed QE scores.
    """
    comet_qe_zero_score_windows = []

    with tempfile.NamedTemporaryFile(mode='w+', delete=True) as qe_src_file, \
         tempfile.NamedTemporaryFile(mode='w+', delete=True) as qe_mt_file:

        for idx, (src_win, mt_win) in enumerate(zip(qe_src_windows, qe_mt_windows)):
            src_line = " ".join(src_win)
            mt_line = " ".join(mt_win)
            if src_line and mt_line:
                qe_src_file.write(src_line + "\n")
                qe_mt_file.write(mt_line + "\n")
            else:
                comet_qe_zero_score_windows.append(idx)
        qe_src_file.flush()
        qe_mt_file.flush()

        qe_command = [
            "comet-score",
            "-s", qe_src_file.name,
            "-t", qe_mt_file.name,
            "--model", COMET_QE_MODEL,
            "--enable-context",
            "--gpus", GPU_ID,
            "--quiet",
        ]
        qe_result = subprocess.run(qe_command, stdout=subprocess.PIPE, text=True)
        print(qe_result.stdout)
        comet_qe_scores = [float(s) for s in re.findall(r"score:\s(-?[0-9.]+)", qe_result.stdout.strip())][:-1]

    for idx in comet_qe_zero_score_windows:
        comet_qe_scores.insert(idx, 0.0)

    scores_data = {
        'paragraph_id': paragraph_id,
        'comet_scores': 0.0,  # Not computed in reference-free mode.
        'comet_qe_scores': comet_qe_scores,
        'windows_length': len(comet_qe_scores),
        'windows_qe_length': len(comet_qe_scores),
        'avg_comet': 0.0,
        'avg_comet_qe': sum(comet_qe_scores) / len(comet_qe_scores) if comet_qe_scores else 0,
    }
    return scores_data


# -----------------------------------------------------------------------------
# Paragraph-Level Processing
# -----------------------------------------------------------------------------
def paragraph_level_score(row: pd.Series, paragraph_id: int, src_col: str = None,
                          ref_col: str = None, mt_col: str = None) -> None:
    """
    Process alignment and scoring for a single paragraph. Steps include:
      1. Sentence segmentation and preprocessing.
      2. Generating overlaps and embeddings.
      3. Running vector alignment exploration.
      4. Computing COMET and COMET-QE scores and saving window information.

    Args:
        row (pd.Series): A single data row.
        paragraph_id (int): Paragraph identifier.
        src_col (str): Source column name (default is "zh").
        ref_col (str): Reference column name (default is set based on language).
        mt_col (str): MT column name (default is set based on TARGET).
    """
    global mt_nlp, src_nlp

    # Set default columns if not provided
    if ref_col is None:
        ref_col = LANG
    if mt_col is None:
        mt_col = TARGET

    # Sentence segmentation and preprocessing
    src_sentences = segment_sentences_by_punctuation(row[src_col], src_col)
    ref_sentences = segment_sentences_by_punctuation(row[ref_col], ref_col)
    mt_sentences = segment_sentences_by_punctuation(row[mt_col], ref_col)

    src_txt = preprocess_sentences(src_sentences)
    ref_txt = preprocess_sentences(ref_sentences)
    mt_txt = preprocess_sentences(mt_sentences)

    # Generate overlap and embedding data
    src_overlap, src_embed = generate_overlap_and_embedding(src_txt)
    ref_overlap, ref_embed = generate_overlap_and_embedding(ref_txt)
    mt_overlap, mt_embed = generate_overlap_and_embedding(mt_txt)

    # Run vector alignment exploration
    src_ref_alignments = run_vecalign_explore(src_txt, ref_txt, src_overlap, ref_overlap, src_embed, ref_embed)
    src_mt_alignments = run_vecalign_explore(src_txt, mt_txt, src_overlap, mt_overlap, src_embed, mt_embed)

    # For reference-free evaluation: get non-adjusted alignments
    non_adjusted_src = []
    non_adjusted_mt = []
    for src_indices, mt_indices in src_mt_alignments:
        mt_indices = [x for x in mt_indices if x != -1]
        aligned_src = " ".join([src_sentences[i] for i in src_indices]) if src_indices else ""
        aligned_mt = " ".join([mt_sentences[i] for i in mt_indices]) if mt_indices else ""
        non_adjusted_src.append(aligned_src)
        non_adjusted_mt.append(aligned_mt)

    # Find common alignments between src-ref and src-mt
    common_alignments = find_common_alignments(src_ref_alignments, src_mt_alignments)

    adjusted_src, adjusted_ref, adjusted_mt = [], [], []
    for src_indices, ref_indices, mt_indices in common_alignments:
        ref_indices = [x for x in ref_indices if x != -1]
        mt_indices = [x for x in mt_indices if x != -1]
        aligned_src = "" if (src_indices and src_indices[0] < 0) else " ".join([src_sentences[i] for i in src_indices])
        aligned_ref = " ".join([ref_sentences[i] for i in ref_indices]) if ref_indices else ""
        aligned_mt = " ".join([mt_sentences[i] for i in mt_indices]) if mt_indices else ""
        adjusted_src.append(aligned_src)
        adjusted_ref.append(aligned_ref)
        adjusted_mt.append(aligned_mt)

    # Create sliding windows
    src_windows = sliding_windows(adjusted_src, WINDOW_SIZE)
    ref_windows = sliding_windows(adjusted_ref, WINDOW_SIZE)
    mt_windows = sliding_windows(adjusted_mt, WINDOW_SIZE)
    qe_src_windows = sliding_windows(non_adjusted_src, WINDOW_SIZE)
    qe_mt_windows = sliding_windows(non_adjusted_mt, WINDOW_SIZE)

    # Compute metrics and save window information
    compute_metrics(
        row[src_col], row[ref_col], row[mt_col],
        src_windows, ref_windows, mt_windows,
        qe_src_windows, qe_mt_windows,
        paragraph_id, mt_col
    )

    output_dir = os.path.join(SAVE_FOLDER, "windows")
    save_windows_to_file(paragraph_id, adjusted_src, adjusted_ref, adjusted_mt,
                         src_windows, ref_windows, mt_windows,
                         qe_src_windows, qe_mt_windows, output_dir, output_name=mt_col)


def parallel_paragraph_level_score(args: tuple) -> None:
    """
    Process a single paragraph in parallel. If an exception occurs, it prints an error message.

    Args:
        args (tuple): (row (pd.Series), paragraph_id (int))
    """
    row, paragraph_id = args
    try:
        paragraph_level_score(row, paragraph_id, mt_col=TARGET, src_col= SRC_LANG)
    except Exception as e:
        print(f"Error processing paragraph {paragraph_id}: {e}")
        print(f"{TARGET} result cannot be aligned in paragraph {paragraph_id}\n")


# -----------------------------------------------------------------------------
# New Function: Flexible Evaluation (Reference-Free or Full Evaluation)
# -----------------------------------------------------------------------------
def evaluate_score(src: str, tgt: str, ref: Optional[str] = None) -> dict:
    """
    Evaluate quality scores for given source and target texts.
    If a reference is provided, full evaluation is performed (including src-ref alignment);
    otherwise, reference-free evaluation is conducted using only src and tgt.

    Args:
        src (str): Source text.
        tgt (str): Target (MT) text.
        ref (Optional[str]): Reference text (if provided).

    Returns:
        dict: Dictionary of evaluation scores.
    """
    # Full evaluation (with reference)
    if ref is not None:
        src_sentences = segment_sentences_by_punctuation(src, SRC_LANG)
        ref_sentences = segment_sentences_by_punctuation(ref, LANG)
        tgt_sentences = segment_sentences_by_punctuation(tgt, LANG)

        src_txt = preprocess_sentences(src_sentences)
        ref_txt = preprocess_sentences(ref_sentences)
        tgt_txt = preprocess_sentences(tgt_sentences)

        src_overlap, src_embed = generate_overlap_and_embedding(src_txt)
        ref_overlap, ref_embed = generate_overlap_and_embedding(ref_txt)
        tgt_overlap, tgt_embed = generate_overlap_and_embedding(tgt_txt)

        src_ref_alignments = run_vecalign_explore(src_txt, ref_txt, src_overlap, ref_overlap, src_embed, ref_embed)
        src_mt_alignments = run_vecalign_explore(src_txt, tgt_txt, src_overlap, tgt_overlap, src_embed, tgt_embed)

        non_adjusted_src = []
        non_adjusted_mt = []
        for s_indices, t_indices in src_mt_alignments:
            filtered_t_indices = [x for x in t_indices if x != -1]
            aligned_src = " ".join([src_sentences[i] for i in s_indices]) if s_indices else ""
            aligned_mt = " ".join([tgt_sentences[i] for i in filtered_t_indices]) if filtered_t_indices else ""
            non_adjusted_src.append(aligned_src)
            non_adjusted_mt.append(aligned_mt)

        common_alignments = find_common_alignments(src_ref_alignments, src_mt_alignments)
        adjusted_src, adjusted_ref, adjusted_mt = [], [], []
        for s_indices, r_indices, t_indices in common_alignments:
            r_indices = [x for x in r_indices if x != -1]
            t_indices = [x for x in t_indices if x != -1]
            aligned_src = "" if (s_indices and s_indices[0] < 0) else " ".join([src_sentences[i] for i in s_indices])
            aligned_ref = " ".join([ref_sentences[i] for i in r_indices]) if r_indices else ""
            aligned_mt = " ".join([tgt_sentences[i] for i in t_indices]) if t_indices else ""
            adjusted_src.append(aligned_src)
            adjusted_ref.append(aligned_ref)
            adjusted_mt.append(aligned_mt)

        src_windows = sliding_windows(adjusted_src, WINDOW_SIZE)
        ref_windows = sliding_windows(adjusted_ref, WINDOW_SIZE)
        tgt_windows = sliding_windows(adjusted_mt, WINDOW_SIZE)
        qe_src_windows = sliding_windows(non_adjusted_src, WINDOW_SIZE)
        qe_mt_windows = sliding_windows(non_adjusted_mt, WINDOW_SIZE)

        # Use paragraph_id=0 for single evaluation
        scores_data = compute_metrics(src, ref, tgt,
                                      src_windows, ref_windows, tgt_windows,
                                      qe_src_windows, qe_mt_windows,
                                      paragraph_id=0, mt_col=TARGET)
        return scores_data

    # Reference-free evaluation
    else:
        src_sentences = segment_sentences_by_punctuation(src, SRC_LANG)
        tgt_sentences = segment_sentences_by_punctuation(tgt, LANG)

        src_txt = preprocess_sentences(src_sentences)
        tgt_txt = preprocess_sentences(tgt_sentences)

        src_overlap, src_embed = generate_overlap_and_embedding(src_txt)
        tgt_overlap, tgt_embed = generate_overlap_and_embedding(tgt_txt)

        src_mt_alignments = run_vecalign_explore(src_txt, tgt_txt, src_overlap, tgt_overlap, src_embed, tgt_embed)

        non_adjusted_src = []
        non_adjusted_mt = []
        for s_indices, t_indices in src_mt_alignments:
            filtered_t_indices = [x for x in t_indices if x != -1]
            aligned_src = " ".join([src_sentences[i] for i in s_indices]) if s_indices else ""
            aligned_mt = " ".join([tgt_sentences[i] for i in filtered_t_indices]) if filtered_t_indices else ""
            non_adjusted_src.append(aligned_src)
            non_adjusted_mt.append(aligned_mt)

        # In reference-free mode, only compute QE evaluation.
        qe_src_windows = sliding_windows(non_adjusted_src, WINDOW_SIZE)
        qe_mt_windows = sliding_windows(non_adjusted_mt, WINDOW_SIZE)

        scores_data = compute_metrics_reference_free(src_windows=[], mt_windows=[],
                                                     qe_src_windows=qe_src_windows, qe_mt_windows=qe_mt_windows,
                                                     paragraph_id=0, mt_col=TARGET)
        return scores_data


def aggregate_scores_and_merge(evaluated_file_path: str, save_folder: str, target: str) -> dict:
    """
    Read scores for each paragraph, aggregate the results, and save them as a CSV.

    Args:
        evaluated_file_path (str): Path to the original CSV file.
        save_folder (str): Folder where scores are saved.
        target (str): MT target name.

    Returns:
        dict: Overall average scores for each metric.
    """
    df = pd.read_csv(evaluated_file_path)
    df['comet'] = 0.0
    df['comet_qe'] = 0.0
    df['sentences_zero_ratio'] = 0.0
    df['windows_zero_ratio'] = 0.0
    df['windows_qe_zero_ratio'] = 0.0

    scores_dir = os.path.join(save_folder, 'scores')
    total_scores = {
        'comet': [],
        'comet_qe': [],
        'sentences_zero_ratio': [],
        'windows_zero_ratio': [],
        'windows_qe_zero_ratio': []
    }

    for idx in df.index:
        score_file = os.path.join(scores_dir, f'scores_{idx}_{target}.json')
        if os.path.exists(score_file):
            with open(score_file, 'r', encoding='utf-8') as f:
                scores = json.load(f)
                df.at[idx, 'comet'] = scores.get('avg_comet', 0)
                df.at[idx, 'comet_qe'] = scores.get('avg_comet_qe', 0)
                df.at[idx, 'sentences_zero_ratio'] = scores.get('sentences_zero_ratio', 0)
                df.at[idx, 'windows_zero_ratio'] = scores.get('windows_zero_ratio', 0)
                df.at[idx, 'windows_qe_zero_ratio'] = scores.get('windows_qe_zero_ratio', 0)

                total_scores['comet'].append(scores.get('avg_comet', 0))
                total_scores['comet_qe'].append(scores.get('avg_comet_qe', 0))
                total_scores['sentences_zero_ratio'].append(scores.get('sentences_zero_ratio', 0))
                total_scores['windows_zero_ratio'].append(scores.get('windows_zero_ratio', 0))
                total_scores['windows_qe_zero_ratio'].append(scores.get('windows_qe_zero_ratio', 0))

    overall_scores = {metric: (sum(vals) / len(vals) if vals else 0) for metric, vals in total_scores.items()}

    output_path = os.path.join(save_folder, f'evaluated_results_{target}.csv')
    df.to_csv(output_path, index=False)
    return overall_scores


# -----------------------------------------------------------------------------
# Global Parameters
# -----------------------------------------------------------------------------
set_seed(42)

# Set up argparse with defaults for file, target_column, and save folder.
parser = argparse.ArgumentParser(description="Set TARGET_FILE, TARGET_COLUMN, and TASK_LANGUAGE")
parser.add_argument("--file", type=str, default="", help="(Optional) Set the MT target file")
parser.add_argument("--target_column", type=str, default="", help="(Optional) Set the MT target column")
parser.add_argument("--save", type=str, default="./", help="(Optional) Set the save folder")
parser.add_argument("--src_language", type=str, required=True, help="Set the task language (English, Russian, German)")
parser.add_argument("--task_language", type=str, required=True, help="Set the task language (English, Russian, German)")

args = parser.parse_args()

TARGET = args.target_column
TASK_LANGUAGE = args.task_language
SRC_LANGUAGE = args.src_language
print(f"TARGET: {TARGET}")
print(f"TASK_LANGUAGE: {TASK_LANGUAGE}")

if TASK_LANGUAGE == "English":
    LANG = 'en'
elif TASK_LANGUAGE == "Russian":
    LANG = 'ru'
elif TASK_LANGUAGE == "German":
    LANG = 'de'
elif TASK_LANGUAGE == "Japanese":
    LANG = 'ja'
elif TASK_LANGUAGE == "Spanish":
    LANG = 'es'
elif TASK_LANGUAGE == "Chinese":
    LANG = 'zh'
else:
    raise ValueError("Unsupported TASK_LANGUAGE.")

if SRC_LANGUAGE == "English":
    SRC_LANG = 'en'
elif SRC_LANGUAGE == "Russian":
    SRC_LANG = 'ru'
elif SRC_LANGUAGE == "German":
    SRC_LANG = 'de'
elif SRC_LANGUAGE == "Japanese":
    SRC_LANG = 'ja'
elif SRC_LANGUAGE == "Spanish":
    SRC_LANG = 'es'
elif SRC_LANGUAGE == "Chinese":
    SRC_LANG = 'zh'
else:
    raise ValueError("Unsupported TASK_LANGUAGE.")

# File and folder path settings
evaluated_file_path = args.file  # May be empty if not provided
WINDOW_SIZE = 3
SEPARATOR = "</s>"
SAVE_FOLDER = args.save
GPU_ID = "1"
COMET_MODEL = "Unbabel/wmt22-comet-da"
COMET_QE_MODEL = "Unbabel/wmt22-cometkiwi-da"

if not os.path.exists(SAVE_FOLDER):
    os.makedirs(SAVE_FOLDER)
    print(f"Folder '{SAVE_FOLDER}' created")
else:
    print(f"Folder '{SAVE_FOLDER}' already exists")

# Load Spacy models based on task language
if TASK_LANGUAGE == "English":
    mt_nlp = spacy.load("en_core_web_sm")
elif TASK_LANGUAGE == "Russian":
    mt_nlp = spacy.load("ru_core_news_sm")
elif TASK_LANGUAGE == "German":
    mt_nlp = spacy.load("de_core_news_sm")
elif TASK_LANGUAGE == "Japanese":
    mt_nlp = spacy.load("ja_core_news_sm")
elif TASK_LANGUAGE == "Spanish":
    mt_nlp = spacy.load("es_core_news_sm")
elif TASK_LANGUAGE == "Chinese":
    mt_nlp = spacy.load("zh_core_web_sm")
    
if SRC_LANGUAGE == "English":
    src_nlp = spacy.load("en_core_web_sm")
elif SRC_LANGUAGE == "Russian":
    src_nlp = spacy.load("ru_core_news_sm")
elif SRC_LANGUAGE == "German":
    src_nlp = spacy.load("de_core_news_sm")
elif SRC_LANGUAGE == "Japanese":
    src_nlp = spacy.load("ja_core_news_sm")
elif SRC_LANGUAGE == "Spanish":
    src_nlp = spacy.load("es_core_news_sm")
elif SRC_LANGUAGE == "Chinese":
    src_nlp = spacy.load("zh_core_web_sm")

# -----------------------------------------------------------------------------
# Main Process: Parallel processing of paragraphs and score aggregation
# Command: export LASER="/path/to/laser/"
# Command for evaluate csv: 
# python long_context_eval.py --file eval_en_ja.csv --target_column mpc --save eval_en_ja --src_language English --task_language Japanese
# -----------------------------------------------------------------------------
if __name__ == "__main__":
    data = pd.read_csv(evaluated_file_path)
    pool_args = [(row, idx) for idx, row in data.iterrows()]
    with Pool(2) as pool:
        pool.map(parallel_paragraph_level_score, pool_args)
    overall_scores = aggregate_scores_and_merge(evaluated_file_path, SAVE_FOLDER, TARGET)
    timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    output_result = f"{TARGET}: {TASK_LANGUAGE} Overall scores: {overall_scores}, time: {timestamp}\n"
    print(output_result)