Spaces:
Sleeping
Sleeping
File size: 25,544 Bytes
dd05f29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
"""
Copyright 2019 Brian Thompson
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import logging
import sys
from ast import literal_eval
from collections import OrderedDict
from math import ceil
from time import time
import numpy as np
import pyximport
pyximport.install(setup_args={'include_dirs':np.get_include()}, inplace=True, reload_support=True)
from dp_core import make_dense_costs, score_path, sparse_dp, make_sparse_costs, dense_dp
logger = logging.getLogger('vecalign') # set up in vecalign.py
def preprocess_line(line):
line = line.strip()
if len(line) == 0:
line = 'BLANK_LINE'
return line
def yield_overlaps(lines, num_overlaps):
lines = [preprocess_line(line) for line in lines]
for overlap in range(1, num_overlaps + 1):
for out_line in layer(lines, overlap):
# check must be here so all outputs are unique
out_line2 = out_line[:10000] # limit line so dont encode arbitrarily long sentences
yield out_line2
def read_in_embeddings(text_file, embed_file):
"""
Given a text file with candidate sentences and a corresponing embedding file,
make a maping from candidate sentence to embedding index,
and a numpy array of the embeddings
"""
sent2line = dict()
with open(text_file, 'rt', encoding="utf-8") as fin:
for ii, line in enumerate(fin):
if line.strip() in sent2line:
raise Exception('got multiple embeddings for the same line')
sent2line[line.strip()] = ii
line_embeddings = np.fromfile(embed_file, dtype=np.float32, count=-1)
if line_embeddings.size == 0:
raise Exception('Got empty embedding file')
laser_embedding_size = line_embeddings.size // len(sent2line) # currently hardcoded to 1024
if laser_embedding_size != 1024:
logger.warning('expected an embedding size of 1024, got %s', laser_embedding_size)
logger.info('laser_embedding_size determined to be %d', laser_embedding_size)
line_embeddings.resize(line_embeddings.shape[0] // laser_embedding_size, laser_embedding_size)
return sent2line, line_embeddings
def make_doc_embedding(sent2line, line_embeddings, lines, num_overlaps):
"""
lines: sentences in input document to embed
sent2line, line_embeddings: precomputed embeddings for lines (and overlaps of lines)
"""
lines = [preprocess_line(line) for line in lines]
vecsize = line_embeddings.shape[1]
vecs0 = np.empty((num_overlaps, len(lines), vecsize), dtype=np.float32)
for ii, overlap in enumerate(range(1, num_overlaps + 1)):
for jj, out_line in enumerate(layer(lines, overlap)):
try:
line_id = sent2line[out_line]
except KeyError:
logger.warning('Failed to find overlap=%d line "%s". Will use random vector.', overlap, out_line)
line_id = None
if line_id is not None:
vec = line_embeddings[line_id]
else:
vec = np.random.random(vecsize) - 0.5
vec = vec / np.linalg.norm(vec)
vecs0[ii, jj, :] = vec
return vecs0
def make_norm1(vecs0):
"""
make vectors norm==1 so that cosine distance can be computed via dot product
"""
for ii in range(vecs0.shape[0]):
for jj in range(vecs0.shape[1]):
norm = np.sqrt(np.square(vecs0[ii, jj, :]).sum())
vecs0[ii, jj, :] = vecs0[ii, jj, :] / (norm + 1e-5)
def layer(lines, num_overlaps, comb=' '):
"""
make front-padded overlapping sentences
"""
if num_overlaps < 1:
raise Exception('num_overlaps must be >= 1')
out = ['PAD', ] * min(num_overlaps - 1, len(lines))
for ii in range(len(lines) - num_overlaps + 1):
out.append(comb.join(lines[ii:ii + num_overlaps]))
return out
def read_alignments(fin):
alignments = []
with open(fin, 'rt', encoding="utf-8") as infile:
for line in infile:
fields = [x.strip() for x in line.split(':') if len(x.strip())]
if len(fields) < 2:
raise Exception('Got line "%s", which does not have at least two ":" separated fields' % line.strip())
try:
src = literal_eval(fields[0])
tgt = literal_eval(fields[1])
except:
raise Exception('Failed to parse line "%s"' % line.strip())
alignments.append((src, tgt))
# I know bluealign files have a few entries entries missing,
# but I don't fix them in order to be consistent previous reported scores
return alignments
def print_alignments(alignments, scores=None, src_lines=None, tgt_lines=None, ofile=sys.stdout):
if scores is None:
scores = [None for _ in alignments]
for (x, y), s in zip(alignments, scores):
if s is None:
print('%s:%s' % (x, y), file=ofile)
else:
print('%s:%s:%.6f' % (x, y, s), file=ofile)
if src_lines is not None and tgt_lines is not None:
print(' '*40, 'SRC: ', ' '.join([src_lines[i].replace('\n', ' ').strip() for i in x]), file=ofile)
print(' '*40, 'TGT: ', ' '.join([tgt_lines[i].replace('\n', ' ').strip() for i in y]), file=ofile)
class DeletionKnob(object):
"""
A good deletion penalty is dependent on normalization, and probably language, domain, etc, etc
I want a way to control deletion penalty that generalizes well...
Sampling costs and use percentile seems to work fairly well.
"""
def __init__(self, samp, res_min, res_max):
self.res_min = res_min
self.res_max = res_max
if self.res_min >= self.res_max:
logger.warning('res_max <= res_min, increasing it')
self.res_max = self.res_min + 1e-4
num_bins = 1000
num_pts = 30
self.hist, self.bin_edges = np.histogram(samp, bins=num_bins,
range=[self.res_min, self.res_max],
density=True)
dx = self.bin_edges[1] - self.bin_edges[0]
self.cdf = np.cumsum(self.hist) * dx
interp_points = [(0, self.res_min), ]
for knob_val in np.linspace(0, 1, num_pts - 1)[1:-1]:
cdf_idx = np.searchsorted(self.cdf, knob_val)
cdf_val = self.res_min + cdf_idx / float(num_bins) * (self.res_max - self.res_min)
interp_points.append((knob_val, cdf_val))
interp_points.append((1, self.res_max))
self.x, self.y = zip(*interp_points)
def percentile_frac_to_del_penalty(self, knob_val):
del_pen = np.interp([knob_val], self.x, self.y)[0]
return del_pen
def make_alignment_types(max_alignment_size):
# return list of all (n,m) where n+m <= max_alignment_size
# does not include deletions, i.e. (1, 0) or (0, 1)
alignment_types = []
for x in range(1, max_alignment_size):
for y in range(1, max_alignment_size):
if x + y <= max_alignment_size:
alignment_types.append((x, y))
return alignment_types
def make_one_to_many_alignment_types(max_alignment_size):
# return list of all (1, m) where m <= max_alignment_size
# does not include deletions, i.e. (1, 0) or (0, 1)
alignment_types = []
for m in range(1, max_alignment_size + 1):
alignment_types.append((1, m))
return alignment_types
def ab2xy_w_offset(aa, bb_idx, bb_offset):
bb_from_side = bb_idx + bb_offset[aa]
xx = aa - bb_from_side
yy = bb_from_side
return (xx, yy)
def xy2ab_w_offset(xx, yy, bb_offset):
aa = xx + yy
bb_from_side = yy
bb = bb_from_side - bb_offset[aa]
return aa, bb
def process_scores(scores, alignments):
# floating point sometimes gives negative numbers, which is a little unnerving ...
scores = np.clip(scores, a_min=0, a_max=None)
for ii, (x_algn, y_algn) in enumerate(alignments):
# deletion penalty is pretty arbitrary, just report 0
if len(x_algn) == 0 or len(y_algn) == 0:
scores[ii] = 0.0
# report sores un-normalized by alignment sizes
# (still normalized with random vectors, though)
else:
scores[ii] = scores[ii] / len(x_algn) / len(y_algn)
return scores
def sparse_traceback(a_b_csum, a_b_xp, a_b_yp, b_offset, xsize, ysize):
alignments = []
xx = xsize
yy = ysize
cum_costs = []
while True:
aa, bb = xy2ab_w_offset(xx, yy, b_offset)
cum_costs.append(a_b_csum[aa, bb])
xp = a_b_xp[aa, bb]
yp = a_b_yp[aa, bb]
if xx == yy == 0:
break
if xx < 0 or yy < 0:
raise Exception('traceback bug')
x_side = list(range(xx - xp, xx))
y_side = list(range(yy - yp, yy))
alignments.append((x_side, y_side))
xx = xx - xp
yy = yy - yp
alignments.reverse()
cum_costs.reverse()
costs = np.array(cum_costs[1:]) - np.array(cum_costs[:-1])
# "costs" are scaled by x_alignment_size * y_alignment_size
# and the cost of a deletion is del_penalty
# "scores": 0 for deletion/insertion,
# and cosine distance, *not* scaled
# by len(x_alignment)*len(y_alignment)
scores = process_scores(scores=costs, alignments=alignments)
return alignments, scores
def dense_traceback(x_y_tb):
xsize, ysize = x_y_tb.shape
xx = xsize - 1
yy = ysize - 1
alignments = []
while True:
if xx == yy == 0:
break
bp = x_y_tb[xx, yy]
if bp == 0:
xp, yp = 1, 1
alignments.append(([xx - 1], [yy - 1]))
elif bp == 1:
xp, yp = 0, 1
alignments.append(([], [yy - 1]))
elif bp == 2:
xp, yp = 1, 0
alignments.append(([xx - 1], []))
else:
raise Exception('got unknown value')
xx = xx - xp
yy = yy - yp
alignments.reverse()
return alignments
def append_slant(path, xwidth, ywidth):
"""
Append quantized approximation to a straight line
from current x,y to a point at (x+xwidth, y+ywidth)
"""
NN = xwidth + ywidth
xstart, ystart = path[-1]
for ii in range(1, NN + 1):
x = xstart + round(xwidth * ii / NN)
y = ystart + round(ywidth * ii / NN)
# In the case of ties we want them to round differently,
# so explicitly make sure we take a step of 1, not 0 or 2
lastx, lasty = path[-1]
delta = x + y - lastx - lasty
if delta == 1:
path.append((x, y))
elif delta == 2:
path.append((x - 1, y))
elif delta == 0:
path.append((x + 1, y))
def alignment_to_search_path(algn):
"""
Given an alignment, make searchpath.
Searchpath must step exactly one position in x XOR y at each time step.
In the case of a block of deletions, the order found by DP is not meaningful.
To make things consistent and to improve the probability of recovering
from search errors, we search an approximately straight line
through a block of deletions. We do the same through a many-many
alignment, even though we currently don't refine a many-many alignment...
"""
path = [(0, 0), ]
xdel, ydel = 0, 0
ydel = 0
for x, y in algn:
if len(x) and len(y):
append_slant(path, xdel, ydel)
xdel, ydel = 0, 0
append_slant(path, len(x), len(y))
elif len(x):
xdel += len(x)
elif len(y):
ydel += len(y)
append_slant(path, xdel, ydel)
return path
def extend_alignments(course_alignments, size0, size1):
"""
extend alignments to include new endpoints size0, size1
if alignments are larger than size0/size1, raise exception
"""
# could be a string of deletions or insertions at end, so cannot just grab last one
xmax = 0 # maximum x value in course_alignments
ymax = 0 # maximum y value in course_alignments
for x, y in course_alignments:
for xval in x:
xmax = max(xmax, xval)
for yval in y:
ymax = max(ymax, yval)
if xmax > size0 or ymax > size1:
raise Exception('asked to extend alignments but already bigger than requested')
# do not duplicate xmax/ymax, do include size0/size1
extra_x = list(range(xmax + 1, size0 + 1))
extra_y = list(range(ymax + 1, size1 + 1))
logger.debug('extending alignments in x by %d and y by %d', len(extra_x), len(extra_y))
if len(extra_x) == 0:
for yval in extra_y:
course_alignments.append(([], [yval]))
elif len(extra_y) == 0:
for xval in extra_x:
course_alignments.append(([xval], []))
else:
course_alignments.append((extra_x, extra_y))
def upsample_alignment(algn):
def upsample_one_alignment(xx):
return list(range(min(xx) * 2, (max(xx) + 1) * 2))
new_algn = []
for xx, yy in algn:
if len(xx) == 0:
for yyy in upsample_one_alignment(yy):
new_algn.append(([], [yyy]))
elif len(yy) == 0:
for xxx in upsample_one_alignment(xx):
new_algn.append(([xxx], []))
else:
new_algn.append((upsample_one_alignment(xx), upsample_one_alignment(yy)))
return new_algn
def make_del_knob(e_laser,
f_laser,
e_laser_norms,
f_laser_norms,
sample_size):
e_size = e_laser.shape[0]
f_size = f_laser.shape[0]
if e_size > 0 and f_size > 0 and sample_size > 0:
if e_size * f_size < sample_size:
# dont sample, just compute full matrix
sample_size = e_size * f_size
x_idxs = np.zeros(sample_size, dtype=np.int32)
y_idxs = np.zeros(sample_size, dtype=np.int32)
c = 0
for ii in range(e_size):
for jj in range(f_size):
x_idxs[c] = ii
y_idxs[c] = jj
c += 1
else:
# get random samples
x_idxs = np.random.choice(range(e_size), size=sample_size, replace=True).astype(np.int32)
y_idxs = np.random.choice(range(f_size), size=sample_size, replace=True).astype(np.int32)
# output
random_scores = np.empty(sample_size, dtype=np.float32)
score_path(x_idxs, y_idxs,
e_laser_norms, f_laser_norms,
e_laser, f_laser,
random_scores, )
min_score = 0
max_score = max(random_scores) # could bump this up... but its probably fine
else:
# Not much we can do here...
random_scores = np.array([0.0, 0.5, 1.0]) # ???
min_score = 0
max_score = 1 # ????
del_knob = DeletionKnob(random_scores, min_score, max_score)
return del_knob
def compute_norms(vecs0, vecs1, num_samples, overlaps_to_use=None):
# overlaps_to_use = 10 # 10 matches before
overlaps1, size1, dim = vecs1.shape
overlaps0, size0, dim0 = vecs0.shape
assert (dim == dim0)
if overlaps_to_use is not None:
if overlaps_to_use > overlaps1:
raise Exception('Cannot use more overlaps than provided. You may want to re-run make_verlaps.py with a larger -n value')
else:
overlaps_to_use = overlaps1
samps_per_overlap = ceil(num_samples / overlaps_to_use)
if size1 and samps_per_overlap:
# sample other size (from all overlaps) to compre to this side
vecs1_rand_sample = np.empty((samps_per_overlap * overlaps_to_use, dim), dtype=np.float32)
for overlap_ii in range(overlaps_to_use):
idxs = np.random.choice(range(size1), size=samps_per_overlap, replace=True)
random_vecs = vecs1[overlap_ii, idxs, :]
vecs1_rand_sample[overlap_ii * samps_per_overlap:(overlap_ii + 1) * samps_per_overlap, :] = random_vecs
norms0 = np.empty((overlaps0, size0), dtype=np.float32)
for overlap_ii in range(overlaps0):
e_laser = vecs0[overlap_ii, :, :]
sim = np.matmul(e_laser, vecs1_rand_sample.T)
norms0[overlap_ii, :] = 1.0 - sim.mean(axis=1)
else: # no samples, no normalization
norms0 = np.ones((overlaps0, size0)).astype(np.float32)
return norms0
def downsample_vectors(vecs1):
a, b, c = vecs1.shape
half = np.empty((a, b // 2, c), dtype=np.float32)
for ii in range(a):
# average consecutive vectors
for jj in range(0, b - b % 2, 2):
v1 = vecs1[ii, jj, :]
v2 = vecs1[ii, jj + 1, :]
half[ii, jj // 2, :] = v1 + v2
# compute mean for all vectors
mean = np.mean(half[ii, :, :], axis=0)
for jj in range(0, b - b % 2, 2):
# remove mean
half[ii, jj // 2, :] = half[ii, jj // 2, :] - mean
# make vectors norm==1 so dot product is cosine distance
make_norm1(half)
return half
def vecalign(vecs0,
vecs1,
final_alignment_types,
del_percentile_frac,
width_over2,
max_size_full_dp,
costs_sample_size,
num_samps_for_norm,
norms0=None,
norms1=None):
if width_over2 < 3:
logger.warning('width_over2 was set to %d, which does not make sense. increasing to 3.', width_over2)
width_over2 = 3
# make sure input embeddings are norm==1
make_norm1(vecs0)
make_norm1(vecs1)
# save off runtime stats for summary
runtimes = OrderedDict()
# Determine stack depth
s0, s1 = vecs0.shape[1], vecs1.shape[1]
max_depth = 0
while s0 * s1 > max_size_full_dp ** 2:
max_depth += 1
s0 = s0 // 2
s1 = s1 // 2
# init recursion stack
# depth is 0-based (full size is 0, 1 is half, 2 is quarter, etc)
stack = {0: {'v0': vecs0, 'v1': vecs1}}
# downsample sentence vectors
t0 = time()
for depth in range(1, max_depth + 1):
stack[depth] = {'v0': downsample_vectors(stack[depth - 1]['v0']),
'v1': downsample_vectors(stack[depth - 1]['v1'])}
runtimes['Downsample embeddings'] = time() - t0
# compute norms for all depths, add sizes, add alignment types
t0 = time()
for depth in stack:
stack[depth]['size0'] = stack[depth]['v0'].shape[1]
stack[depth]['size1'] = stack[depth]['v1'].shape[1]
stack[depth]['alignment_types'] = final_alignment_types if depth == 0 else [(1, 1)]
if depth == 0 and norms0 is not None:
if norms0.shape != vecs0.shape[:2]:
print('norms0.shape:', norms0.shape)
print('vecs0.shape[:2]:', vecs0.shape[:2])
raise Exception('norms0 wrong shape')
stack[depth]['n0'] = norms0
else:
stack[depth]['n0'] = compute_norms(stack[depth]['v0'], stack[depth]['v1'], num_samps_for_norm)
if depth == 0 and norms1 is not None:
if norms1.shape != vecs1.shape[:2]:
print('norms1.shape:', norms1.shape)
print('vecs1.shape[:2]:', vecs1.shape[:2])
raise Exception('norms1 wrong shape')
stack[depth]['n1'] = norms1
else:
stack[depth]['n1'] = compute_norms(stack[depth]['v1'], stack[depth]['v0'], num_samps_for_norm)
runtimes['Normalize embeddings'] = time() - t0
# Compute deletion penalty for all depths
t0 = time()
for depth in stack:
stack[depth]['del_knob'] = make_del_knob(e_laser=stack[depth]['v0'][0, :, :],
f_laser=stack[depth]['v1'][0, :, :],
e_laser_norms=stack[depth]['n0'][0, :],
f_laser_norms=stack[depth]['n1'][0, :],
sample_size=costs_sample_size)
stack[depth]['del_penalty'] = stack[depth]['del_knob'].percentile_frac_to_del_penalty(del_percentile_frac)
logger.debug('del_penalty at depth %d: %f', depth, stack[depth]['del_penalty'])
runtimes['Compute deletion penalties'] = time() - t0
tt = time() - t0
logger.debug('%d x %d full DP make features: %.6fs (%.3e per dot product)',
stack[max_depth]['size0'], stack[max_depth]['size1'], tt,
tt / (stack[max_depth]['size0'] + 1e-6) / (stack[max_depth]['size1'] + 1e-6))
# full DP at maximum recursion depth
t0 = time()
stack[max_depth]['costs_1to1'] = make_dense_costs(stack[max_depth]['v0'],
stack[max_depth]['v1'],
stack[max_depth]['n0'],
stack[max_depth]['n1'])
runtimes['Full DP make features'] = time() - t0
t0 = time()
_, stack[max_depth]['x_y_tb'] = dense_dp(stack[max_depth]['costs_1to1'], stack[max_depth]['del_penalty'])
stack[max_depth]['alignments'] = dense_traceback(stack[max_depth]['x_y_tb'])
runtimes['Full DP'] = time() - t0
# upsample the path up to the top resolution
compute_costs_times = []
dp_times = []
upsample_depths = [0, ] if max_depth == 0 else list(reversed(range(0, max_depth)))
for depth in upsample_depths:
if max_depth > 0: # upsample previoius alignment to current resolution
course_alignments = upsample_alignment(stack[depth + 1]['alignments'])
# features may have been truncated when downsampleing, so alignment may need extended
extend_alignments(course_alignments, stack[depth]['size0'], stack[depth]['size1']) # in-place
else: # We did a full size 1-1 search, so search same size with more alignment types
course_alignments = stack[0]['alignments']
# convert couse alignments to a searchpath
stack[depth]['searchpath'] = alignment_to_search_path(course_alignments)
# compute ccosts for sparse DP
t0 = time()
stack[depth]['a_b_costs'], stack[depth]['b_offset'] = make_sparse_costs(stack[depth]['v0'], stack[depth]['v1'],
stack[depth]['n0'], stack[depth]['n1'],
stack[depth]['searchpath'],
stack[depth]['alignment_types'],
width_over2)
tt = time() - t0
num_dot_products = len(stack[depth]['b_offset']) * len(stack[depth]['alignment_types']) * width_over2 * 2
logger.debug('%d x %d sparse DP (%d alignment types, %d window) make features: %.6fs (%.3e per dot product)',
stack[max_depth]['size0'], stack[max_depth]['size1'],
len(stack[depth]['alignment_types']), width_over2 * 2,
tt, tt / (num_dot_products + 1e6))
compute_costs_times.append(time() - t0)
t0 = time()
# perform sparse DP
stack[depth]['a_b_csum'], stack[depth]['a_b_xp'], stack[depth]['a_b_yp'], \
stack[depth]['new_b_offset'] = sparse_dp(stack[depth]['a_b_costs'], stack[depth]['b_offset'],
stack[depth]['alignment_types'], stack[depth]['del_penalty'],
stack[depth]['size0'], stack[depth]['size1'])
# performace traceback to get alignments and alignment scores
# for debugging, avoid overwriting stack[depth]['alignments']
akey = 'final_alignments' if depth == 0 else 'alignments'
stack[depth][akey], stack[depth]['alignment_scores'] = sparse_traceback(stack[depth]['a_b_csum'],
stack[depth]['a_b_xp'],
stack[depth]['a_b_yp'],
stack[depth]['new_b_offset'],
stack[depth]['size0'],
stack[depth]['size1'])
dp_times.append(time() - t0)
runtimes['Upsample DP compute costs'] = sum(compute_costs_times[:-1])
runtimes['Upsample DP'] = sum(dp_times[:-1])
runtimes['Final DP compute costs'] = compute_costs_times[-1]
runtimes['Final DP'] = dp_times[-1]
# log time stats
max_key_str_len = max([len(key) for key in runtimes])
for key in runtimes:
if runtimes[key] > 5e-5:
logger.info(key + ' took ' + '.' * (max_key_str_len + 5 - len(key)) + ('%.4fs' % runtimes[key]).rjust(7))
return stack
|