File size: 5,131 Bytes
05d3571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER  Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
# Tool to calculate multilingual similarity error rate (xSIM)

import faiss
import numpy as np
import typing as tp
import os
import json
from enum import Enum


class Margin(Enum):
    RATIO = "ratio"
    DISTANCE = "distance"
    ABSOLUTE = "absolute"

    @classmethod
    def has_value(cls, value):
        return value in cls._value2member_map_


def xSIM(
    x: tp.Union[str, np.ndarray],
    y: tp.Union[str, np.ndarray],
    margin: str = Margin.RATIO.value,
    k: int = 4,
    dim: int = 1024,
    fp16: bool = False,
    eval_text: str = None,
    augmented_json: str = None,
) -> tp.Tuple[int, int, tp.Dict[str, int]]:
    assert Margin.has_value(margin), f"Margin type: {margin}, is not supported."
    if not isinstance(x, np.ndarray):
        x = _load_embeddings(x, dim, fp16)
    if not isinstance(y, np.ndarray):
        y = _load_embeddings(y, dim, fp16)
    # calculate xSIM error
    return calculate_error(x, y, margin, k, eval_text, augmented_json)


def _load_embeddings(infile: str, dim: int, fp16: bool = False) -> np.ndarray:
    assert os.path.isfile(infile), f"file: {infile} does not exist."
    emb = np.fromfile(infile, dtype=np.float16 if fp16 else np.float32)
    num_examples = emb.shape[0] // dim
    emb.resize(num_examples, dim)
    if fp16:
        emb = emb.astype(np.float32)  # faiss currently only supports fp32
    return emb


def score_margin(
    Dxy: np.ndarray,
    Ixy: np.ndarray,
    Ax: np.ndarray,
    Ay: np.ndarray,
    margin: str,
    k: int,
) -> np.ndarray:
    nbex = Dxy.shape[0]
    scores = np.zeros((nbex, k))
    for i in range(nbex):
        for j in range(k):
            jj = Ixy[i, j]
            a = Dxy[i, j]
            b = (Ax[i] + Ay[jj]) / 2
            if margin == Margin.RATIO.value:
                scores[i, j] = a / b
            else:  # distance margin
                scores[i, j] = a - b
    return scores


def _score_knn(x: np.ndarray, y: np.ndarray, k: int, margin: str) -> np.ndarray:
    nbex, dim = x.shape
    # create index
    idx_x = faiss.IndexFlatIP(dim)
    idx_y = faiss.IndexFlatIP(dim)
    # L2 normalization needed for cosine distance
    faiss.normalize_L2(x)
    faiss.normalize_L2(y)
    idx_x.add(x)
    idx_y.add(y)
    if margin == Margin.ABSOLUTE.value:
        scores, indices = idx_y.search(x, 1)
    else:
        # return cosine similarity and indices of k closest neighbors
        Cos_xy, Idx_xy = idx_y.search(x, k)
        Cos_yx, Idx_yx = idx_x.search(y, k)

        # average cosines
        Avg_xy = Cos_xy.mean(axis=1)
        Avg_yx = Cos_yx.mean(axis=1)

        scores = score_margin(Cos_xy, Idx_xy, Avg_xy, Avg_yx, margin, k)

        # find best
        best = scores.argmax(axis=1)
        indices = np.zeros((nbex, 1), dtype=np.int32)
        for i in range(nbex):
            indices[i] = Idx_xy[i, best[i]]
    return indices


def get_transform(augmented_json, closest_neighbor, src):
    if (
        closest_neighbor in augmented_json
        and augmented_json[closest_neighbor]["src"] == src
    ):
        return augmented_json[closest_neighbor]["errtype"]
    return "Misaligned"


def calculate_error(
    x: np.ndarray,
    y: np.ndarray,
    margin: str = None,
    k: int = 4,
    eval_text: str = None,
    augmented_json: str = None,
) -> tp.Tuple[int, int, tp.Dict[str, int]]:
    if augmented_json:
        with open(augmented_json) as f:
            augmented_json = json.load(f)
        assert (
            x.shape[0] < y.shape[0]
        ), f"Shape mismatch: {x.shape[0]} >= target {y.shape[0]}"
    else:
        assert (
            x.shape == y.shape
        ), f"number of source {x.shape} / target {y.shape} shapes mismatch, "
    nbex = x.shape[0]
    augmented_report = {}

    # for each x calculate the highest scoring neighbor from y
    closest_neighbor = _score_knn(x, y, k, margin)

    if eval_text:  # calc textual error
        lines = open(eval_text, encoding="utf-8", errors="surrogateescape").readlines()
        err = 0
        for ex in range(nbex):
            if lines[ex] != lines[closest_neighbor[ex, 0]]:
                err += 1
                if augmented_json:
                    transform = get_transform(
                        augmented_json,
                        lines[closest_neighbor[ex, 0]].strip(),
                        lines[ex].strip(),
                    )
                    augmented_report[transform] = augmented_report.get(transform, 0) + 1
    else:  # calc index error
        ref = np.linspace(0, nbex - 1, nbex).astype(int)  # [0, nbex)
        err = nbex - np.equal(closest_neighbor.reshape(nbex), ref).astype(int).sum()
    return err, nbex, augmented_report