File size: 7,865 Bytes
05d3571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER  Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for various tasks such as document classification,
# and bitext filtering
#
# --------------------------------------------------------
#
# Tool to calculate the dual approach multilingual similarity error rate (P-xSIM)

import typing as tp
from pathlib import Path

import faiss
import numpy as np
import torch
from scipy.special import softmax
from sklearn.metrics.pairwise import cosine_similarity
from stopes.eval.auto_pcp.audio_comparator import Comparator, get_model_pred
from xsim import Margin, score_margin


def get_neighbors(
    x: np.ndarray, y: np.ndarray, k: int, margin: str
) -> tp.Tuple[np.ndarray, np.ndarray, int]:
    x_copy = x.astype(np.float32).copy()
    y_copy = y.astype(np.float32).copy()
    nbex, dim = x.shape
    # create index
    idx_x = faiss.IndexFlatIP(dim)
    idx_y = faiss.IndexFlatIP(dim)
    # L2 normalization needed for cosine distance
    faiss.normalize_L2(x_copy)
    faiss.normalize_L2(y_copy)
    idx_x.add(x_copy)
    idx_y.add(y_copy)
    if margin == Margin.ABSOLUTE.value:
        scores, indices = idx_y.search(x_copy, k)
    else:
        # return cosine similarity and indices of k closest neighbors
        Cos_xy, Idx_xy = idx_y.search(x_copy, k)
        Cos_yx, Idx_yx = idx_x.search(y_copy, k)

        # average cosines
        Avg_xy = Cos_xy.mean(axis=1)
        Avg_yx = Cos_yx.mean(axis=1)

        scores = score_margin(Cos_xy, Idx_xy, Avg_xy, Avg_yx, margin, k)
        indices = Idx_xy
    return scores, indices, nbex


def get_cosine_scores(src_emb: np.ndarray, neighbor_embs: np.ndarray) -> np.ndarray:
    assert src_emb.shape[0] == neighbor_embs.shape[1]
    src_embs = np.repeat(
        np.expand_dims(src_emb, axis=0), neighbor_embs.shape[0], axis=0
    )
    cosine_scores = cosine_similarity(src_embs, neighbor_embs).diagonal()
    return cosine_scores


def get_comparator_scores(
    src_emb: np.ndarray,
    neighbor_embs: np.ndarray,
    comparator_model: tp.Any,
    symmetrize_comparator: bool,
) -> np.ndarray:
    src_embs = np.repeat(
        np.expand_dims(src_emb, axis=0), neighbor_embs.shape[0], axis=0
    )
    a = torch.from_numpy(src_embs).unsqueeze(1)  # restore depth dim
    b = torch.from_numpy(neighbor_embs).unsqueeze(1)
    res = get_comparator_preds(a, b, comparator_model, symmetrize_comparator)
    scores_softmax = softmax(res)
    return np.array(scores_softmax)


def get_comparator_preds(
    src_emb: np.ndarray, tgt_emb: np.ndarray, model: tp.Any, symmetrize: bool
):
    preds = (
        get_model_pred(
            model,
            src=src_emb[:, 0],
            mt=tgt_emb[:, 0],
            use_gpu=model.use_gpu,
            batch_size=1,
        )[:, 0]
        .cpu()
        .numpy()
    )
    if symmetrize:
        preds2 = (
            get_model_pred(
                model,
                src=tgt_emb[:, 0],
                mt=src_emb[:, 0],
                use_gpu=model.use_gpu,
                batch_size=1,
            )[:, 0]
            .cpu()
            .numpy()
        )
        preds = (preds2 + preds) / 2
    return preds


def get_blended_predictions(
    alpha: float,
    nbex: int,
    margin_scores: np.ndarray,
    x_aux: np.ndarray,
    y_aux: np.ndarray,
    neighbor_indices: np.ndarray,
    comparator_model: tp.Optional[tp.Any] = None,
    symmetrize_comparator: bool = False,
) -> list[int]:
    predictions = []
    for src_index in range(nbex):
        neighbors = neighbor_indices[src_index]
        neighbor_embs = y_aux[neighbors].astype(np.float32)
        src_emb = x_aux[src_index].astype(np.float32)
        aux_scores = (
            get_comparator_scores(
                src_emb, neighbor_embs, comparator_model, symmetrize_comparator
            )
            if comparator_model
            else get_cosine_scores(src_emb, neighbor_embs)
        )
        assert margin_scores[src_index].shape == aux_scores.shape
        blended_scores = alpha * margin_scores[src_index] + (1 - alpha) * aux_scores
        blended_neighbor_idx = blended_scores.argmax()
        predictions.append(neighbors[blended_neighbor_idx])
    return predictions


def PxSIM(
    x: np.ndarray,
    y: np.ndarray,
    x_aux: np.ndarray,
    y_aux: np.ndarray,
    alpha: float,
    margin: str = Margin.RATIO.value,
    k: int = 16,
    comparator_path: tp.Optional[Path] = None,
    symmetrize_comparator: bool = False,
) -> tp.Tuple[int, int, list[int]]:
    """
    Parameters
    ----------
    x : np.ndarray
        source-side embedding array
    y : np.ndarray
        target-side embedding array
    x_aux : np.ndarray
        source-side embedding array using auxiliary model
    y_aux : np.ndarray
        target-side embedding array using auxiliary model
    alpha : int
        parameter to weight blended score
    margin : str
        margin scoring function (e.g. ratio, absolute, distance)
    k : int
        number of neighbors in k-nn search
    comparator_path : Path
        path to AutoPCP model config
    symmetrize_comparator : bool
        whether to symmetrize the comparator predictions

    Returns
    -------
    err : int
        Number of errors
    nbex : int
        Number of examples
    preds : list[int]
        List of (index-based) predictions
    """
    assert Margin.has_value(margin), f"Margin type: {margin}, is not supported."
    comparator_model = Comparator.load(comparator_path) if comparator_path else None
    # get margin-based nearest neighbors
    margin_scores, neighbor_indices, nbex = get_neighbors(x, y, k=k, margin=margin)
    preds = get_blended_predictions(
        alpha,
        nbex,
        margin_scores,
        x_aux,
        y_aux,
        neighbor_indices,
        comparator_model,
        symmetrize_comparator,
    )
    err = sum([idx != pred for idx, pred in enumerate(preds)])
    print(f"P-xSIM error: {100 * (err / nbex):.2f}")
    return err, nbex, preds


def load_embeddings(
    infile: Path, dim: int, fp16: bool = False, numpy_header: bool = False
) -> np.ndarray:
    assert infile.exists(), f"file: {infile} does not exist."
    if numpy_header:
        return np.load(infile)
    emb = np.fromfile(infile, dtype=np.float16 if fp16 else np.float32)
    num_examples = emb.shape[0] // dim
    emb.resize(num_examples, dim)
    if fp16:
        emb = emb.astype(np.float32)  # faiss currently only supports fp32
    return emb


def run(
    src_emb: Path,
    tgt_emb: Path,
    src_aux_emb: Path,
    tgt_aux_emb: Path,
    alpha: float,
    margin: str = Margin.RATIO.value,
    k: int = 16,
    emb_fp16: bool = False,
    aux_emb_fp16: bool = False,
    emb_dim: int = 1024,
    aux_emb_dim: int = 1024,
    numpy_header: bool = False,
    comparator_path: tp.Optional[Path] = None,
    symmetrize_comparator: bool = False,
    prediction_savepath: tp.Optional[Path] = None,
) -> None:
    x = load_embeddings(src_emb, emb_dim, emb_fp16, numpy_header)
    y = load_embeddings(tgt_emb, emb_dim, emb_fp16, numpy_header)
    x_aux = load_embeddings(src_aux_emb, aux_emb_dim, aux_emb_fp16, numpy_header)
    y_aux = load_embeddings(tgt_aux_emb, aux_emb_dim, aux_emb_fp16, numpy_header)
    assert (x.shape == y.shape) and (x_aux.shape == y_aux.shape)
    _, _, preds = PxSIM(
        x, y, x_aux, y_aux, alpha, margin, k, comparator_path, symmetrize_comparator
    )
    if prediction_savepath:
        with open(prediction_savepath, "w") as outf:
            for pred in preds:
                print(pred, file=outf)


if __name__ == "__main__":
    import func_argparse

    func_argparse.main()