File size: 10,106 Bytes
05d3571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/python
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER  Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
# Python tool to search for paraphrases in FAISS index

import re
import sys
import os.path
import tempfile
import argparse
import faiss
import time
import pdb
import numpy as np
from collections import namedtuple

# get environment
assert os.environ.get('LASER'), 'Please set the enviornment variable LASER'
LASER = os.environ['LASER']

sys.path.append(LASER + '/source/lib')
from indexing import IndexLoad, IndexTextOpen, IndexTextQuery, SplitOpen, SplitAccess
from embed import SentenceEncoder, EncodeLoad, EncodeFile, EncodeTime
from text_processing import Token, BPEfastApply

SPACE_NORMALIZER = re.compile("\s+")
Batch = namedtuple('Batch', 'srcs tokens lengths')

# calculate L2 distance between [x]
# and the vectors referenced in idxs
# x should be already normalized
def IndexDistL2(X, E, D, I, thresh=1.0, dtype=np.float32, sort=True):
    nb, nK = I.shape
    dim = X.shape[1]
    dist_l2 = np.empty((nb, nK), dtype=np.float32)
    y = np.empty((1, dim), dtype=dtype)
    for i in range(nb):
        for k in range(nK):
            if D[i, k] <= thresh:
                # get embedding from disk
                np.copyto(y, SplitAccess(E, I[i, k]))
                faiss.normalize_L2(y)
                dist_l2[i, k] = 1.0 - np.dot(X[i], y[0])
            else:
                # exclude sentences which already have a huge FAISS distance
                # (getting embeddings from disk is very time consumming)
                dist_l2[i, k] = 1.0

        if sort:
            # re-sort according to L2
            idxs = np.argsort(dist_l2[i], axis=0)
            dist_l2[i] = dist_l2[i][idxs]
            I[i] = I[i][idxs]

    return dist_l2, I

###############################################################################
#
# Apply an absolute threshold on the distance
#
###############################################################################

def MarginAbs(em, ofp, params, args, stats):
    D, I = params.idx.search(em, args.kmax)
    thresh = args.threshold_faiss
    if args.embed:
        D, I = IndexDistL2(em, params.E, D, I, args.threshold_faiss)
        thresh = args.threshold_L2

    for n in range(D.shape[0]):

        prev = {}  # for deduplication
        for i in range(args.kmax):
            txt = IndexTextQuery(params.T, params.R, I[n, i])
            if (args.dedup and txt not in prev) and D[n, i] <= thresh:
                prev[txt] = 1
                ofp.write('{:d}\t{:7.5f}\t{}\n'
                          .format(stats.nbs, D[n, i], txt))
                stats.nbp += 1

        # display source sentece if requested
        if (args.include_source == 'matches' and len(prev) > 0):
            ofp.write('{:d}\t{:6.1f}\t{}\n'
                      .format(stats.nbs, 0.0, sentences[n].replace('@@ ', '')))

        if args.include_source == 'always':
            ofp.write('{:d}\t{:6.1f}\t{}\n'
                      .format(stats.nbs, 0.0, sentences[n].replace('@@ ', '')))
        stats.nbs += 1


###############################################################################
#
# Apply an threshold on the ratio between distance and average
#
###############################################################################

def MarginRatio(em, ofp, params, args, stats):
    D, I = params.idx.search(em, args.margin_k)
    thresh = args.threshold
    if args.embed:
        D, I = IndexDistL2(em, params.E, D, I, args.threshold_faiss)
        thresh = args.threshold_L2

    Mean = D.mean(axis=1)
    for n in range(D.shape[0]):
        if D[n, 0] / Mean[n] <= args.threshold:
            if args.include_source == 'matches':
                ofp.write('{:d}\t{:6.1f}\t{}\n'
                          .format(stats.nbs, 0.0, sentences[n].replace('@@ ', '')))
            txt = IndexTextQuery(params.T, params.R, I[n, 0])
            ofp.write('{:d}\t{:7.5f}\t{}\n'.format(stats.nbs, D[n, 0], txt))
            stats.nbp += 1

        stats.nbs += 1

    if args.include_source == 'always':
        ofp.write('{:d}\t{:6.1f}\t{}\n'
                  .format(stats.nbs, 0.0, sentences[n].replace('@@ ', '')))


###############################################################################

def MarginDist(em, ofp, params, args, stats):
    print('ERROR: MarginAbs not implemented')
    sys.exit(1)


###############################################################################

def buffered_read(fp, buffer_size):
    buffer = []
    for src_str in fp:
        buffer.append(src_str.strip())
        if len(buffer) >= buffer_size:
            yield buffer
            buffer = []

    if len(buffer) > 0:
        yield buffer


###############################################################################

parser = argparse.ArgumentParser('LASER: paraphrase tool')

parser.add_argument('--encoder', type=str, required=True,
    help='encoder to be used')
parser.add_argument('--encoding', default='utf-8',
    help='Character encoding for input/output')
parser.add_argument('--token-lang', type=str, default='--',
    help="Language of tokenizer ('--' for no tokenization)")
parser.add_argument('--bpe-codes', type=str, default=None, required=True,
    help='BPE codes')
parser.add_argument('--buffer-size', type=int, default=100,
    help='Buffer size (sentences)')
parser.add_argument('--max-tokens', type=int, default=12000,
    help='Maximum number of tokens to process in a batch')
parser.add_argument('--max-sentences', type=int, default=None,
    help='Maximum number of sentences to process in a batch')
parser.add_argument('--cpu', action='store_true',
    help='Use CPU instead of GPU')

parser.add_argument('--index', type=str, required=True,
    help='FAISS index')
parser.add_argument('--nprobe', type=int, default=128,
    help='FAISS: value of nprobe')
parser.add_argument('--text', type=str, required=True,
    help='File with indexed texts')
parser.add_argument(
    '--dim', type=int, default=1024,
    help='Dimension of specified sentence embeddings')
parser.add_argument(
    '--embed', type=str, default=None,
    help='Sentence embeddings, true L2 distance will be calculated when specified')

parser.add_argument('-i', '--input', type=str, required=True,
    help='Input text file')
parser.add_argument('-p', '--output', type=str, default='--',
    help='Output paraphrases')
parser.add_argument('--kmax', type=int, default=10,
    help='Max value of distance or margin of each paraphrase')
parser.add_argument('--dedup', type=int, default=1,
    help='Deduplicate list of paraphrases')
parser.add_argument('--include-source', default='never',
    choices=['never', 'matches', 'always'],
    help='Include source sentence in the list of paraphrases')
parser.add_argument('--margin',
    choices=['absolute', 'distance', 'ratio'],
    default='ratio', help='Margin function')
parser.add_argument('-T', '--threshold-margin', type=float, default=0.9,
    help='Threshold on margin')
parser.add_argument('--threshold-faiss', type=float, default=0.4,
    help='Threshold on FAISS distance')
parser.add_argument('--threshold-L2', type=float, default=0.2,
    help='Threshold on L2 distance')
parser.add_argument('--margin-k', type=int, default=4,
    help='Number of nearest neighbors for margin calculation')

parser.add_argument('--verbose', action='store_true',
    help='Detailed output')


print('\nLASER: paraphrase tool')
args = parser.parse_args()

# index,
# memory mapped texts, references and word counts
# encoder
params = namedtuple('params', 'idx T R W M E enc')

# open text and reference file
params.T, params.R, params.W, params.M = IndexTextOpen(args.text)

# Open on-disk embeddings for L2 distances
if args.embed:
    params.E = SplitOpen(args.embed, ['en'],
                                args.dim, np.float32, verbose=False)

# load FAISS index
params.idx = IndexLoad(args.index, args.nprobe)

# load sentence encoder
params.enc = EncodeLoad(args)


margin_methods = {'absolute': MarginAbs,
                  'distance': MarginDist,
                  'ratio': MarginRatio}

with tempfile.TemporaryDirectory() as tmpdir:
    ifile = args.input
    if args.token_lang != '--':
        ifile = os.path.join(tmpdir, 'tok')
        Token(args.input,
              ifile,
              lang=args.token_lang,
              romanize=True if args.token_lang == 'el' else False,
              lower_case=True, gzip=False,
              verbose=args.verbose, over_write=False)

    if args.bpe_codes:
        bpe_file = os.path.join(tmpdir, 'bpe')
        BPEfastApply(ifile,
                     bpe_file,
                     args.bpe_codes,
                     verbose=args.verbose, over_write=False)
        ifile = bpe_file

    print(' - processing (batch size is {:d})'.format(args.buffer_size))
    ifp = open(ifile, 'r', encoding=args.encoding, errors='surrogateescape')
    if args.output == '--':
        ofp = sys.stdout
    else:
        ofp = open(args.output, 'w', encoding=args.encoding, errors='surrogateescape')
    stats = namedtuple('stats', 'ns np')
    stats.nbs = 0
    stats.nbp = 0
    t = time.time()
    for sentences in buffered_read(ifp, args.buffer_size):
        embed = params.enc.encode_sentences(sentences)
        faiss.normalize_L2(embed)
        # call function for selected margin method
        margin_methods.get(args.margin)(embed, ofp, params, args, stats)
        if stats.nbs % 1000 == 0:
            print('\r - {:d} sentences {:d} paraphrases'
                  .format(stats.nbs, stats.nbp), end='')

    ifp.close()
    if args.output != '--':
        ofp.close()
    print('\r - {:d} sentences {:d} paraphrases'
          .format(stats.nbs, stats.nbp), end='')
    EncodeTime(t)