File size: 9,960 Bytes
05d3571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/python
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER  Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
# Helper functions for tokenization and BPE

import os
import sys
import logging
from pathlib import Path
import numpy as np
from subprocess import run, check_output, CalledProcessError, DEVNULL

logging.basicConfig(
    stream=sys.stdout,
    level=logging.INFO,
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s")
logger = logging.getLogger("preprocess")

# get environment
assert os.environ.get('LASER'), 'Please set the enviornment variable LASER'
LASER = os.environ['LASER']

FASTBPE = LASER + '/tools-external/fastBPE/fast'
MOSES_BDIR = LASER + '/tools-external/moses-tokenizer/tokenizer/'
MOSES_TOKENIZER = MOSES_BDIR + 'tokenizer.perl -q -no-escape -threads 20 -l '
MOSES_LC = MOSES_BDIR + 'lowercase.perl'
NORM_PUNC = MOSES_BDIR + 'normalize-punctuation.perl -l '
DESCAPE = MOSES_BDIR + 'deescape-special-chars.perl'
REM_NON_PRINT_CHAR = MOSES_BDIR + 'remove-non-printing-char.perl'
SPM_DIR = LASER + '/tools-external/sentencepiece-master/build/src/'
SPM = 'LD_LIBRARY_PATH=' + SPM_DIR + ' ' + SPM_DIR + '/spm_encode --output_format=piece'

# Romanization (and lower casing)
ROMAN_LC = 'python3 ' + LASER + '/source/lib/romanize_lc.py -l '

# Mecab tokenizer for Japanese
MECAB = LASER + '/tools-external/mecab'




###############################################################################
#
# Tokenize a line of text
#
###############################################################################

def TokenLine(line, lang='en', lower_case=True, romanize=False):
    assert lower_case, 'lower case is needed by all the models'
    roman = lang if romanize else 'none'
    tok = check_output(
            REM_NON_PRINT_CHAR
            + '|' + NORM_PUNC + lang
            + '|' + DESCAPE
            + '|' + MOSES_TOKENIZER + lang
            + ('| python3 -m jieba -d ' if lang == 'zh' else '')
            + ('|' + MECAB + '/bin/mecab -O wakati -b 50000 ' if lang == 'ja' else '')
            + '|' + ROMAN_LC + roman,
            input=line,
            encoding='UTF-8',
            shell=True)
    return tok.strip()


###############################################################################
#
# Tokenize a file
#
###############################################################################

def Token(inp_fname, out_fname, lang='en',
          lower_case=True, romanize=False, descape=False,
          verbose=False, over_write=False, gzip=False):
    assert lower_case, 'lower case is needed by all the models'
    assert not over_write, 'over-write is not yet implemented'
    if not os.path.isfile(out_fname):
        cat = 'zcat ' if gzip else 'cat '
        roman = lang if romanize else 'none'
        # handle some iso3 langauge codes
        if lang in ('cmn', 'wuu', 'yue'):
            lang = 'zh'
        if lang in ('jpn'):
            lang = 'ja'
        if verbose:
            logger.info('tokenizing {} in language {} {} {}'
                  .format(os.path.basename(inp_fname), lang,
                          '(gzip)' if gzip else '',
                          '(de-escaped)' if descape else '',
                          '(romanized)' if romanize else ''))
        run(cat + inp_fname
            + '|' + REM_NON_PRINT_CHAR
            + '|' + NORM_PUNC + lang
            + ('|' + DESCAPE if descape else '')
            + '|' + MOSES_TOKENIZER + lang
            + ('| python3 -m jieba -d ' if lang == 'zh' else '')
            + ('|' + MECAB + '/bin/mecab -O wakati -b 50000 ' if lang == 'ja' else '')
            + '|' + ROMAN_LC + roman
            + '>' + out_fname,
            env=dict(os.environ, LD_LIBRARY_PATH=MECAB + '/lib'),
            shell=True)
    elif not over_write and verbose:
        logger.info('tokenized file {} exists already'
              .format(os.path.basename(out_fname), lang))


###############################################################################
#
# Apply SPM on a whole file
#
###############################################################################

def SPMApply(inp_fname, out_fname, spm_model, lang='en',
             lower_case=True, descape=False,
             verbose=False, over_write=False, gzip=False):
    assert lower_case, 'lower case is needed by all the models'
    if not os.path.isfile(out_fname):
        cat = 'zcat ' if gzip else 'cat '
        if verbose:
            logger.info('SPM processing {} {} {}'
                  .format(os.path.basename(inp_fname),
                         '(gzip)' if gzip else '',
                         '(de-escaped)' if descape else ''))

        assert os.path.isfile(spm_model), f'SPM model {spm_model} not found'
        command = (cat + inp_fname
            + '|' + REM_NON_PRINT_CHAR
            + '|' + NORM_PUNC + lang
            + ('|' + DESCAPE if descape else '')
            + '|' + ROMAN_LC + 'none'
            + '|' + SPM + " --model=" + spm_model
            + ' > ' + out_fname)
        try:
            run(["/bin/bash", "-o", "pipefail", "-c", command], check=True, capture_output=True)
        except CalledProcessError as e:
            logger.error(e.stderr.decode().strip())
            sys.exit(1)

    elif not over_write and verbose:
        logger.info('SPM encoded file {} exists already'
              .format(os.path.basename(out_fname)))


###############################################################################
#
# Apply FastBPE on a whole file
#
###############################################################################

def BPEfastApply(inp_fname, out_fname, bpe_codes,
                 verbose=False, over_write=False):
    if not os.path.isfile(out_fname):
        if verbose:
            logger.info('fastBPE: processing {}'
                  .format(os.path.basename(inp_fname)))
        bpe_vocab = bpe_codes.replace('fcodes', 'fvocab')
        assert os.path.isfile(bpe_vocab), f'fastBPE: vocab file {bpe_vocab} not found'
        run(FASTBPE + ' applybpe '
            + out_fname + ' ' + inp_fname
            + ' ' + bpe_codes
            + ' ' + bpe_vocab, shell=True, stderr=DEVNULL)
    elif not over_write and verbose:
        logger.info('fastBPE: {} exists already'
              .format(os.path.basename(out_fname)))


###############################################################################
#
# Split long lines into multiple sentences at "."
#
###############################################################################

def SplitLines(ifname, of_txt, of_sid):
    if os.path.isfile(of_txt):
        print(' - SplitLines: {} already exists'.format(of_txt))
        return
    nl = 0
    nl_sp = 0
    maxw = 0
    maxw_sp = 0
    fp_sid = open(of_sid, 'w')
    fp_txt = open(of_txt, 'w')
    with open(ifname, 'r') as ifp:
        for line in ifp:
            print('{:d}'.format(nl), file=fp_sid)  # store current sentence ID
            nw = 0
            words = line.strip().split()
            maxw = max(maxw, len(words))
            for i, word in enumerate(words):
                if word == '.' and i != len(words)-1:
                    if nw > 0:
                        print(' {}'.format(word), file=fp_txt)
                    else:
                        print('{}'.format(word), file=fp_txt)
                    # store current sentence ID
                    print('{:d}'.format(nl), file=fp_sid)
                    nl_sp += 1
                    maxw_sp = max(maxw_sp, nw+1)
                    nw = 0
                else:
                    if nw > 0:
                        print(' {}'.format(word), end='', file=fp_txt)
                    else:
                        print('{}'.format(word), end='', file=fp_txt)
                    nw += 1
            if nw > 0:
                # handle remainder of sentence
                print('', file=fp_txt)
                nl_sp += 1
                maxw_sp = max(maxw_sp, nw+1)
            nl += 1
    print(' - Split sentences: {}'.format(ifname))
    print(' -                  lines/max words: {:d}/{:d} -> {:d}/{:d}'
          .format(nl, maxw, nl_sp, maxw_sp))
    fp_sid.close()
    fp_txt.close()


###############################################################################
#
# Join embeddings of previously split lines (average)
#
###############################################################################

def JoinEmbed(if_embed, sid_fname, of_embed, dim=1024):
    if os.path.isfile(of_embed):
        print(' - JoinEmbed: {} already exists'.format(of_embed))
        return
    # read the input embeddings
    em_in = np.fromfile(if_embed, dtype=np.float32, count=-1).reshape(-1, dim)
    ninp = em_in.shape[0]
    print(' - Combine embeddings:')
    print('                input: {:s} {:d} sentences'.format(if_embed, ninp))

    # get all sentence IDs
    sid = np.empty(ninp, dtype=np.int32)
    i = 0
    with open(sid_fname, 'r') as fp_sid:
        for line in fp_sid:
            sid[i] = int(line)
            i += 1
    nout = sid.max() + 1
    print('                IDs: {:s}, {:d} sentences'.format(sid_fname, nout))

    # combining
    em_out = np.zeros((nout, dim), dtype=np.float32)
    cnt = np.zeros(nout, dtype=np.int32)
    for i in range(ninp):
        idx = sid[i]
        em_out[idx] += em_in[i]  # cumulate sentence vectors
        cnt[idx] += 1

    if (cnt == 0).astype(int).sum() > 0:
        print('ERROR: missing lines')
        sys.exit(1)

    # normalize
    for i in range(nout):
        em_out[i] /= cnt[i]

    print('                output: {:s}'.format(of_embed))
    em_out.tofile(of_embed)