Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,226 Bytes
988f0c4 37df18e 988f0c4 9fde336 988f0c4 50c9a05 988f0c4 e49e746 988f0c4 50c9a05 0635cb1 988f0c4 e49e746 988f0c4 e49e746 988f0c4 9fde336 2c8a4a7 d62b227 2c8a4a7 e49e746 2c8a4a7 e49e746 2c8a4a7 e49e746 2c8a4a7 9fde336 2c8a4a7 79b84d6 2c8a4a7 988f0c4 37df18e 988f0c4 a4bd9af 9fde336 a4bd9af 9fde336 a4bd9af 988f0c4 4b798bc 988f0c4 4b798bc 37df18e 4b798bc 37df18e 4b798bc 37df18e 4b798bc 988f0c4 4b798bc 37df18e 988f0c4 37df18e 988f0c4 37df18e 988f0c4 37df18e 988f0c4 37df18e 988f0c4 37df18e 988f0c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import logging
import re
from threading import Thread
from typing import List, Optional
import os
import torch
from transformers import (
AutoModel,
AutoProcessor,
AutoConfig,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer,
)
from PIL import Image
from .chat_utils import Conversation, get_conv_template
logger = logging.getLogger(__name__)
def load_model_from_nv(model_path: str = "nvidia/Eagle-2-8B"):
token = os.environ.get("HF_TOKEN")
# hotfix the model to use flash attention 2
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, token=token)
config._attn_implementation = "flash_attention_2"
config.vision_config._attn_implementation = "flash_attention_2"
config.text_config._attn_implementation = "flash_attention_2"
print("Successfully set the attn_implementation to flash_attention_2")
logger.info(f"token = {token[:4]}***{token[-2:]}")
model = AutoModel.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
token=token
)
model.to("cuda")
processor = AutoProcessor.from_pretrained(model_path, config=config, trust_remote_code=True, use_fast=True, token=token)
return model, processor
def load_model_from_eagle(model_path: str = "NVEagle/Eagle2-8B"):
token = os.environ.get("HF_TOKEN")
logger.info(f"token = {token[:4]}***{token[-2:]}")
# hotfix the model to use flash attention 2
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, token=token)
config._attn_implementation = "flash_attention_2"
config.vision_config._attn_implementation = "flash_attention_2"
config.text_config._attn_implementation = "flash_attention_2"
print("Successfully set the attn_implementation to flash_attention_2")
model = AutoModel.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
token=token
)
model.to("cuda")
processor = AutoProcessor.from_pretrained(model_path, config=config, trust_remote_code=True, use_fast=True, token=token)
return model, processor
def load_model(model_path: str = "nvidia/Eagle2-8B"):
try:
model, processor = load_model_from_nv(model_path)
except Exception as e:
logger.error(f"Failed to load model from HF, trying to load from eagle: {e}")
model, processor = load_model_from_eagle()
return model, processor
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = [stop.to("cuda") for stop in stops]
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
for stop in self.stops:
if input_ids.shape[-1] < len(stop):
continue
if torch.all((stop == input_ids[0][-len(stop) :])).item():
return True
return False
def preprocess(
messages: list[dict],
processor,
video_nframes: int = 16,
):
"""
Build messages from the conversations and images.
"""
# get images from conversations
results = [
{
"role": "system",
"content": """You are Eagle 2, a cutting-edge large language model developed by NVIDIA. You are highly capable, efficient, and aligned, specialized in understanding complex multimodal inputs and providing expert-level responses across domains.
Always be concise, accurate, and helpful. You respond like a reliable co-pilot to researchers, developers, and engineers, offering deep technical insight, step-by-step reasoning, and practical suggestions.
You can interpret long contexts, follow nuanced instructions, and dynamically adjust your tone to match the user's intent. If the user does not specify a tone, default to a professional, technical, yet friendly style.
You understand you are Eagle 2, and may refer to yourself as such when asked."""}
]
# get texts from conversations
# converstion = get_conv_template(sft_format)
# only use the last 3 round of messages
# latest_messages = messages[-3:]
all_images_num = 0
for mid, message in enumerate(messages):
if message["role"] == "user":
record = {
"role": message["role"],
"content": [],
}
if "images" in message:
per_round_images = message["images"]
for image in per_round_images:
if isinstance(image, Image.Image) and all_images_num < 128:
record["content"].append(
{
"type": "image",
"image": image,
}
)
all_images_num+=1
elif isinstance(image, str) and image.endswith((".jpeg", ".jpg", ".png", ".gif")) and all_images_num < 128:
record["content"].append(
{
"type": "image",
"image": image,
}
)
all_images_num+=1
elif isinstance(image, str) and image.endswith((".mp4", ".mov", ".avi", ".webm")) and all_images_num < 128-video_nframes:
record["content"].append(
{
"type": "video",
"video": image,
"nframes": video_nframes,
}
)
all_images_num+=video_nframes
if 'content' in message:
record["content"].append(
{
"type": "text",
"text": str(message["content"]).strip(),
}
)
results.append(record)
elif message["role"] == "assistant":
formatted_answer = message["content"].strip()
# ◁think▷用户说了“你好”,这是一个非常简单的问候,通常用于开启对话。我需要判断用户的意图。可能性一:用户只是礼貌性地打招呼,想要开启一段对话;可能性二:用户可能有更具体的需求,比如询问我的功能、功能或者需要帮助。由于用户没有提供更多信息,我需要保持开放,同时引导用户进一步说明他们的需求。
# 我的回复需要既友好又开放,不能显得过于正式或冷漠。同时,我需要避免假设用户的具体需求,而是提供一个轻松的、鼓励继续对话的回应。◁/think▷你好!很高兴见到你。有什么我可以帮助你的吗
# delete all the texts between ◁think▷ and ◁/think▷
# FIXME: this is a hack to remove the thinking texts
# formatted_answer = re.sub(r"◁think▷.*◁/think▷", "", formatted_answer)
think_end_token = '◁/think▷'
formatted_answer = formatted_answer.split(think_end_token)[-1]
results.append(
{
"role": message["role"],
"content": [
{
"type": "text",
"text": formatted_answer,
}
],
}
)
assert (
formatted_answer.count(processor.image_token) == 0
), f"there should be no {processor.image_token} in the assistant's reply, but got {messages}"
# print(f"messages = {results}")
text = processor.apply_chat_template(results, add_generation_prompt=False)
# print(f"raw text = {text}")
image_inputs, video_inputs, video_kwargs = processor.process_vision_info(results, return_video_kwargs=True)
inputs = processor(
images=image_inputs,
videos=video_inputs,
text=[text],
return_tensors="pt",
padding=True,
truncation=True,
videos_kwargs=video_kwargs,
)
return inputs
@torch.no_grad()
@torch.inference_mode()
def eagle_vl_generate(
model: torch.nn.Module,
processor: AutoProcessor,
conversations: list[Conversation],
stop_words: list,
max_length: int = 256,
temperature: float = 1.0,
top_p: float = 1.0,
chunk_size: int = -1,
video_nframes: int = 16,
):
# convert conversation to inputs
print(f"conversations = {conversations}")
inputs = preprocess(conversations, processor=processor, video_nframes=video_nframes)
inputs = inputs.to(model.device)
return generate(
model,
processor,
inputs,
max_gen_len=max_length,
temperature=temperature,
top_p=top_p,
stop_words=stop_words,
chunk_size=chunk_size,
)
def generate(
model,
processor,
inputs,
max_gen_len: int = 256,
temperature: float = 0,
top_p: float = 0.95,
stop_words: List[str] = [],
chunk_size: int = -1
):
"""Stream the text output from the multimodality model with prompt and image inputs."""
tokenizer = processor.tokenizer
stop_words_ids = [torch.tensor(tokenizer.encode(stop_word)) for stop_word in stop_words]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
kwargs = dict(
**inputs,
max_new_tokens=max_gen_len,
do_sample=True,
streamer=streamer,
stopping_criteria=stopping_criteria,
)
if temperature > 0:
kwargs.update(
{
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
}
)
else:
kwargs["do_sample"] = False
thread = Thread(target=model.generate, kwargs=kwargs)
thread.start()
yield from streamer
|