File size: 11,932 Bytes
988f0c4
9f11963
988f0c4
 
 
9f11963
988f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fde336
 
988f0c4
 
 
 
 
 
 
 
9fde336
988f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37df18e
988f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f11963
988f0c4
 
 
 
9f11963
988f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f11963
107b53d
988f0c4
37df18e
988f0c4
 
 
 
 
 
 
 
 
 
 
 
107b53d
988f0c4
 
 
37df18e
988f0c4
 
 
 
 
 
 
 
37df18e
988f0c4
 
 
37df18e
 
 
 
 
 
988f0c4
 
 
37df18e
 
 
 
 
 
 
 
 
 
 
 
 
 
988f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107b53d
988f0c4
 
37df18e
988f0c4
 
 
 
 
 
 
 
37df18e
 
 
 
 
 
988f0c4
 
 
 
 
 
 
107b53d
988f0c4
 
 
 
 
 
 
 
 
 
9f11963
988f0c4
107b53d
988f0c4
37df18e
988f0c4
9f11963
988f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107b53d
988f0c4
37df18e
988f0c4
 
 
 
 
 
 
 
 
 
 
 
5a4f184
988f0c4
 
 
 
 
 
9fde336
988f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aafb13
37df18e
988f0c4
 
37df18e
988f0c4
 
 
 
 
 
107b53d
 
988f0c4
 
107b53d
988f0c4
37df18e
 
 
988f0c4
86398dd
988f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
107b53d
988f0c4
37df18e
988f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fde336
988f0c4
 
 
 
 
 
 
 
 
 
 
 
37df18e
988f0c4
9f11963
 
 
988f0c4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import argparse
import gradio as gr
import os
from PIL import Image
import spaces

from eagle_vl.serve.frontend import reload_javascript
from eagle_vl.serve.utils import (
    configure_logger,
    pil_to_base64,
    parse_ref_bbox,
    strip_stop_words,
    is_variable_assigned,
)
from eagle_vl.serve.gradio_utils import (
    cancel_outputing,
    delete_last_conversation,
    reset_state,
    reset_textbox,
    transfer_input,
    wrap_gen_fn,
)
from eagle_vl.serve.chat_utils import (
    generate_prompt_with_history,
    convert_conversation_to_prompts,
    to_gradio_chatbot,
    to_gradio_history,
)
from eagle_vl.serve.inference import eagle_vl_generate, load_model
from eagle_vl.serve.examples import get_examples

TITLE = """<h1 align="left" style="min-width:200px; margin-top:0;">Chat with Eagle2-VL </h1>"""
DESCRIPTION_TOP = """<a href="https://github.com/NVlabs/EAGLE" target="_blank">Eagle2-VL</a> is a multi-modal LLM that can understand text, images and videos, and generate text"""
DESCRIPTION = """"""
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
DEPLOY_MODELS = dict()
logger = configure_logger()


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, default="Eagle2-8B")
    parser.add_argument(
        "--local-path",
        type=str,
        default="",
        help="huggingface ckpt, optional",
    )
    parser.add_argument("--ip", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int, default=7860)
    return parser.parse_args()


def fetch_model(model_name: str):
    global args, DEPLOY_MODELS

    if args.local_path:
        model_path = args.local_path
    else:
        model_path = f"NVEagle/{args.model}"

    if model_name in DEPLOY_MODELS:
        model_info = DEPLOY_MODELS[model_name]
        print(f"{model_name} has been loaded.")
    else:
        print(f"{model_name} is loading...")
        DEPLOY_MODELS[model_name] = load_model(model_path)
        print(f"Load {model_name} successfully...")
        model_info = DEPLOY_MODELS[model_name]

    return model_info


def preview_images(files) -> list[str]:
    if files is None:
        return []

    image_paths = []
    for file in files:
        image_paths.append(file.name)
    return image_paths


def get_prompt(conversation) -> str:
    """
    Get the prompt for the conversation.
    """
    system_prompt = conversation.system_template.format(system_message=conversation.system_message)
    return system_prompt


@wrap_gen_fn
@spaces.GPU(duration=180)
def predict(
    text,
    images,
    chatbot,
    history,
    top_p,
    temperature,
    max_generate_length,
    max_context_length_tokens,
    video_nframes,
    chunk_size: int = 512,
):
    """
    Predict the response for the input text and images.
    Args:
        text (str): The input text.
        images (list[PIL.Image.Image]): The input images.
        chatbot (list): The chatbot.
        history (list): The history.
        top_p (float): The top-p value.
        temperature (float): The temperature value.
        repetition_penalty (float): The repetition penalty value.
        max_generate_length (int): The max length tokens.
        max_context_length_tokens (int): The max context length tokens.
        chunk_size (int): The chunk size.
    """


    if images is None:
        images = []

    # load images
    pil_images = []
    for img_or_file in images:
        try:
            logger.info(f"img_or_file: {img_or_file}")
            # load as pil image
            if isinstance(images, Image.Image):
                pil_images.append(img_or_file)
            elif isinstance(img_or_file, str):
                if img_or_file.endswith((".mp4", ".mov", ".avi", ".webm")):
                    pil_images.append(img_or_file)
                else:
                    image = Image.open(img_or_file.name).convert("RGB")
                    pil_images.append(image)
        except Exception as e:
            print(f"Error loading image: {e}")


    print("running the prediction function")
    try:
        logger.info("fetching model")
        model, processor = fetch_model(args.model)
        logger.info("model fetched")
        if text == "":
            yield chatbot, history, "Empty context."
            return
    except KeyError:
        logger.info("no model found")
        yield [[text, "No Model Found"]], [], "No Model Found"
        return
    
    # generate prompt
    conversation = generate_prompt_with_history(
        text,
        pil_images,
        history,
        processor,
        max_length=max_context_length_tokens,
    )
    all_conv, last_image = convert_conversation_to_prompts(conversation)
    stop_words = conversation.stop_str
    gradio_chatbot_output = to_gradio_chatbot(conversation)

    full_response = ""
    for x in eagle_vl_generate(
            conversations=all_conv,
            model=model,
            processor=processor,
            stop_words=stop_words,
            max_length=max_generate_length,
            temperature=temperature,
            top_p=top_p,
            video_nframes=video_nframes,
        ):
            full_response += x
            response = strip_stop_words(full_response, stop_words)
            conversation.update_last_message(response)
            gradio_chatbot_output[-1][1] = response

            yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."

    # if last_image is not None:
    #     vg_image = parse_ref_bbox(response, last_image)
    #     if vg_image is not None:
    #         vg_base64 = pil_to_base64(vg_image, "vg", max_size=800, min_size=400)
    #         gradio_chatbot_output[-1][1] += vg_base64
    #         yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."

    logger.info("flushed result to gradio")

    if is_variable_assigned("x"):
        print(
            f"temperature: {temperature}, "
            f"top_p: {top_p}, "
            f"max_generate_length: {max_generate_length}"
        )

    yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"


def retry(
    text,
    images,
    chatbot,
    history,
    top_p,
    temperature,
    max_generate_length,
    max_context_length_tokens,
    video_nframes,
    chunk_size: int = 512,
):
    """
    Retry the response for the input text and images.
    """
    if len(history) == 0:
        yield (chatbot, history, "Empty context")
        return

    chatbot.pop()
    history.pop()
    text = history.pop()[-1]
    if type(text) is tuple:
        text, _ = text

    yield from predict(
        text,
        images,
        chatbot,
        history,
        top_p,
        temperature,
        max_generate_length,
        max_context_length_tokens,
        video_nframes,
        chunk_size,
    )


def build_demo(args: argparse.Namespace) -> gr.Blocks:
    with gr.Blocks(theme=gr.themes.Soft(), delete_cache=(1800, 1800)) as demo:
        history = gr.State([])
        input_text = gr.State()
        input_images = gr.State()

        with gr.Row():
            gr.HTML(TITLE)
            status_display = gr.Markdown("Success", elem_id="status_display")
        gr.Markdown(DESCRIPTION_TOP)

        with gr.Row(equal_height=True):
            with gr.Column(scale=4):
                with gr.Row():
                    chatbot = gr.Chatbot(
                        elem_id="Eagle2-VL-8B-chatbot",
                        show_share_button=True,
                        bubble_full_width=False,
                        height=600,
                    )
                with gr.Row():
                    with gr.Column(scale=4):
                        text_box = gr.Textbox(show_label=False, placeholder="Enter text", container=False)
                    with gr.Column(min_width=70):
                        submit_btn = gr.Button("Send")
                    with gr.Column(min_width=70):
                        cancel_btn = gr.Button("Stop")
                with gr.Row():
                    empty_btn = gr.Button("🧹 New Conversation")
                    retry_btn = gr.Button("🔄 Regenerate")
                    del_last_btn = gr.Button("🗑️ Remove Last Turn")

            with gr.Column():
                # add note no more than 2 images once
                gr.Markdown("Note: you can upload images or videos!")
                upload_images = gr.Files(file_types=["image", "video"], show_label=True)
                gallery = gr.Gallery(columns=[3], height="200px", show_label=True)
                upload_images.change(preview_images, inputs=upload_images, outputs=gallery)
                
                # Parameter Setting Tab for control the generation parameters
                with gr.Tab(label="Parameter Setting"):
                    top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p")
                    temperature = gr.Slider(
                        minimum=0, maximum=1.0, value=0.8, step=0.1, interactive=True, label="Temperature"
                    )
                    max_generate_length = gr.Slider(
                        minimum=512, maximum=8192, value=4096, step=64, interactive=True, label="Max Generate Length"
                    )
                    max_context_length_tokens = gr.Slider(
                        minimum=512, maximum=65536, value=16384, step=64, interactive=True, label="Max Context Length Tokens"
                    )
                    video_nframes = gr.Slider(
                        minimum=1, maximum=128, value=16, step=1, interactive=True, label="Video Nframes"
                    )
                    show_images = gr.HTML(visible=False)
                gr.Markdown("This demo is based on `moonshotai/Kimi-VL-A3B-Thinking` & `deepseek-ai/deepseek-vl2-small` and extends it by adding support for video input.")

        gr.Examples(
            examples=get_examples(ROOT_DIR),
            inputs=[upload_images, show_images, text_box],
        )
        gr.Markdown()

        input_widgets = [
            input_text,
            input_images,
            chatbot,
            history,
            top_p,
            temperature,
            max_generate_length,
            max_context_length_tokens,
            video_nframes
        ]
        output_widgets = [chatbot, history, status_display]

        transfer_input_args = dict(
            fn=transfer_input,
            inputs=[text_box, upload_images],
            outputs=[input_text, input_images, text_box, upload_images, submit_btn],
            show_progress=True,
        )

        predict_args = dict(fn=predict, inputs=input_widgets, outputs=output_widgets, show_progress=True)
        retry_args = dict(fn=retry, inputs=input_widgets, outputs=output_widgets, show_progress=True)
        reset_args = dict(fn=reset_textbox, inputs=[], outputs=[text_box, status_display])

        predict_events = [
            text_box.submit(**transfer_input_args).then(**predict_args),
            submit_btn.click(**transfer_input_args).then(**predict_args),
        ]

        empty_btn.click(reset_state, outputs=output_widgets, show_progress=True)
        empty_btn.click(**reset_args)
        retry_btn.click(**retry_args)
        del_last_btn.click(delete_last_conversation, [chatbot, history], output_widgets, show_progress=True)
        cancel_btn.click(cancel_outputing, [], [status_display], cancels=predict_events)

    demo.title = "Eagle2-VL-8B Chatbot"
    return demo


def main(args: argparse.Namespace):
    demo = build_demo(args)
    reload_javascript()

    # concurrency_count=CONCURRENT_COUNT, max_size=MAX_EVENTS
    favicon_path = os.path.join("eagle_vl/serve/assets/favicon.ico")
    demo.queue().launch(
        favicon_path=favicon_path,
        server_name=args.ip,
        server_port=args.port,
    )


if __name__ == "__main__":
    args = parse_args()
    main(args)