Spaces:
Runtime error
Runtime error
File size: 19,349 Bytes
8173ae1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import os
import random
import shutil
from io import BytesIO
from pathlib import Path
import numpy as np
import openai
import regex as re
import requests
import torch
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from diffusers import DPMSolverMultistepScheduler
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225],
)
small_288 = transforms.Compose([
transforms.Resize(288),
transforms.ToTensor(),
normalize,
])
def collate_fn(examples, with_prior_preservation):
input_ids = [example["instance_prompt_ids"] for example in examples]
input_anchor_ids = [example["instance_anchor_prompt_ids"]
for example in examples]
pixel_values = [example["instance_images"] for example in examples]
mask = [example["mask"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
if with_prior_preservation:
input_ids += [example["class_prompt_ids"] for example in examples]
pixel_values += [example["class_images"] for example in examples]
mask += [example["class_mask"] for example in examples]
input_ids = torch.cat(input_ids, dim=0)
input_anchor_ids = torch.cat(input_anchor_ids, dim=0)
pixel_values = torch.stack(pixel_values)
mask = torch.stack(mask)
pixel_values = pixel_values.to(
memory_format=torch.contiguous_format).float()
mask = mask.to(memory_format=torch.contiguous_format).float()
batch = {
"input_ids": input_ids,
"input_anchor_ids": input_anchor_ids,
"pixel_values": pixel_values,
"mask": mask.unsqueeze(1)
}
return batch
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt[index % len(self.prompt)]
example["index"] = index
return example
class CustomDiffusionDataset(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
concepts_list,
concept_type,
tokenizer,
size=512,
center_crop=False,
with_prior_preservation=False,
num_class_images=200,
hflip=False,
aug=True,
):
self.size = size
self.center_crop = center_crop
self.tokenizer = tokenizer
self.interpolation = Image.BILINEAR
self.aug = aug
self.concept_type = concept_type
self.instance_images_path = []
self.class_images_path = []
self.with_prior_preservation = with_prior_preservation
for concept in concepts_list:
with open(concept["instance_data_dir"], "r") as f:
inst_images_path = f.read().splitlines()
with open(concept["instance_prompt"], "r") as f:
inst_prompt = f.read().splitlines()
inst_img_path = [(x, y, concept['caption_target'])
for (x, y) in zip(inst_images_path, inst_prompt)]
self.instance_images_path.extend(inst_img_path)
if with_prior_preservation:
class_data_root = Path(concept["class_data_dir"])
if os.path.isdir(class_data_root):
class_images_path = list(class_data_root.iterdir())
class_prompt = [concept["class_prompt"]
for _ in range(len(class_images_path))]
else:
with open(class_data_root, "r") as f:
class_images_path = f.read().splitlines()
with open(concept["class_prompt"], "r") as f:
class_prompt = f.read().splitlines()
class_img_path = [(x, y) for (x, y) in zip(
class_images_path, class_prompt)]
self.class_images_path.extend(
class_img_path[:num_class_images])
random.shuffle(self.instance_images_path)
self.num_instance_images = len(self.instance_images_path)
self.num_class_images = len(self.class_images_path)
self._length = max(self.num_class_images, self.num_instance_images)
self.flip = transforms.RandomHorizontalFlip(0.5 * hflip)
self.image_transforms = transforms.Compose(
[
self.flip,
transforms.Resize(
size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(
size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self._length
def preprocess(self, image, scale, resample):
outer, inner = self.size, scale
if scale > self.size:
outer, inner = scale, self.size
top, left = np.random.randint(
0, outer - inner + 1), np.random.randint(0, outer - inner + 1)
image = image.resize((scale, scale), resample=resample)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
instance_image = np.zeros((self.size, self.size, 3), dtype=np.float32)
mask = np.zeros((self.size // 8, self.size // 8))
if scale > self.size:
instance_image = image[top: top + inner, left: left + inner, :]
mask = np.ones((self.size // 8, self.size // 8))
else:
instance_image[top: top + inner, left: left + inner, :] = image
mask[top // 8 + 1: (top + scale) // 8 - 1, left //
8 + 1: (left + scale) // 8 - 1] = 1.
return instance_image, mask
def __getprompt__(self, instance_prompt, instance_target):
if self.concept_type == 'style':
r = np.random.choice([0, 1, 2])
instance_prompt = f'{instance_prompt}, in the style of {instance_target}' if r == 0 else f'in {instance_target}\'s style, {instance_prompt}' if r == 1 else f'in {instance_target}\'s style, {instance_prompt}'
elif self.concept_type == 'object':
anchor, target = instance_target.split('+')
instance_prompt = instance_prompt.replace(anchor, target)
elif self.concept_type == 'memorization':
instance_prompt = instance_target.split('+')[1]
return instance_prompt
def __getitem__(self, index):
example = {}
instance_image, instance_prompt, instance_target = self.instance_images_path[
index % self.num_instance_images]
instance_image = Image.open(instance_image)
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
instance_image = self.flip(instance_image)
# modify instance prompt according to the concept_type to include target concept
# multiple style/object fine-tuning
if ';' in instance_target:
instance_target = instance_target.split(';')
instance_target = instance_target[index % len(instance_target)]
instance_anchor_prompt = instance_prompt
instance_prompt = self.__getprompt__(instance_prompt, instance_target)
# apply resize augmentation and create a valid image region mask
random_scale = self.size
if self.aug:
random_scale = np.random.randint(self.size // 3, self.size + 1) if np.random.uniform(
) < 0.66 else np.random.randint(int(1.2 * self.size), int(1.4 * self.size))
instance_image, mask = self.preprocess(
instance_image, random_scale, self.interpolation)
if random_scale < 0.6 * self.size:
instance_prompt = np.random.choice(
["a far away ", "very small "]) + instance_prompt
elif random_scale > self.size:
instance_prompt = np.random.choice(
["zoomed in ", "close up "]) + instance_prompt
example["instance_images"] = torch.from_numpy(
instance_image).permute(2, 0, 1)
example["mask"] = torch.from_numpy(mask)
example["instance_prompt_ids"] = self.tokenizer(
instance_prompt,
truncation=True,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
example["instance_anchor_prompt_ids"] = self.tokenizer(
instance_anchor_prompt,
truncation=True,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
if self.with_prior_preservation:
class_image, class_prompt = self.class_images_path[index %
self.num_class_images]
class_image = Image.open(class_image)
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = self.image_transforms(class_image)
example["class_mask"] = torch.ones_like(example["mask"])
example["class_prompt_ids"] = self.tokenizer(
class_prompt,
truncation=True,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
return example
def isimage(path):
if 'png' in path.lower() or 'jpg' in path.lower() or 'jpeg' in path.lower():
return True
def filter(folder, impath, outpath=None, unfiltered_path=None, threshold=0.15,
image_threshold=0.5, anchor_size=10, target_size=3, return_score=False):
model = torch.jit.load(
"./assets/sscd_imagenet_mixup.torchscript.pt")
if isinstance(folder, list):
image_paths = folder
image_captions = ["None" for _ in range(len(image_paths))]
elif Path(folder / 'images.txt').exists():
with open(f'{folder}/images.txt', "r") as f:
image_paths = f.read().splitlines()
with open(f'{folder}/caption.txt', "r") as f:
image_captions = f.read().splitlines()
else:
image_paths = [os.path.join(str(folder), file_path)
for file_path in os.listdir(folder) if isimage(file_path)]
image_captions = ["None" for _ in range(len(image_paths))]
batch = small_288(Image.open(impath).convert('RGB')).unsqueeze(0)
embedding_target = model(batch)[0, :]
filtered_paths = []
filtered_captions = []
unfiltered_paths = []
unfiltered_captions = []
count_dict = {}
for im, c in zip(image_paths, image_captions):
if c not in count_dict:
count_dict[c] = 0
if isinstance(folder, list):
batch = small_288(im).unsqueeze(0)
else:
batch = small_288(Image.open(im).convert('RGB')).unsqueeze(0)
embedding = model(batch)[0, :]
diff_sscd = (embedding * embedding_target).sum()
if diff_sscd <= image_threshold:
filtered_paths.append(im)
filtered_captions.append(c)
count_dict[c] += 1
else:
unfiltered_paths.append(im)
unfiltered_captions.append(c)
# only return score
if return_score:
score = len(unfiltered_paths) / \
(len(unfiltered_paths)+len(filtered_paths))
return score
os.makedirs(outpath, exist_ok=True)
os.makedirs(f'{outpath}/samples', exist_ok=True)
with open(f'{outpath}/caption.txt', 'w') as f:
for each in filtered_captions:
f.write(each.strip() + '\n')
with open(f'{outpath}/images.txt', 'w') as f:
for each in filtered_paths:
f.write(each.strip() + '\n')
imbase = Path(each).name
shutil.copy(each, f'{outpath}/samples/{imbase}')
print('++++++++++++++++++++++++++++++++++++++++++++++++')
print('+ Filter Summary +')
print(f'+ Remained images: {len(filtered_paths)}')
print(f'+ Filtered images: {len(unfiltered_paths)}')
print('++++++++++++++++++++++++++++++++++++++++++++++++')
sorted_list = sorted(list(count_dict.items()),
key=lambda x: x[1], reverse=True)
anchor_prompts = [c[0] for c in sorted_list[:anchor_size]]
target_prompts = [c[0] for c in sorted_list[-target_size:]]
return anchor_prompts, target_prompts, len(filtered_paths)
def getanchorprompts(pipeline, accelerator, class_prompt, concept_type, class_images_dir, api_key, num_class_images=200, mem_impath=None):
openai.api_key = api_key
class_prompt_collection = []
caption_target = []
if concept_type == 'object':
messages = [{"role": "system", "content": "You can describe any image via text and provide captions for wide variety of images that is possible to generate."}]
messages = [{"role": "user", "content": f"Generate {num_class_images} captions for images containing a {class_prompt}. The caption should also contain the word \"{class_prompt}\" "}]
while True:
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages
)
class_prompt_collection += [x for x in completion.choices[0].message.content.lower(
).split('\n') if class_prompt in x]
messages.append(
{"role": "assistant", "content": completion.choices[0].message.content})
messages.append(
{"role": "user", "content": f"Generate {num_class_images-len(class_prompt_collection)} more captions"})
if len(class_prompt_collection) >= num_class_images:
break
class_prompt_collection = clean_prompt(class_prompt_collection)[
:num_class_images]
elif concept_type == 'memorization':
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
pipeline.scheduler.config)
num_prompts_firstpass = 5
num_prompts_secondpass = 2
threshold = 0.3
# Generate num_prompts_firstpass paraphrases which generate different content at least 1-threshold % of the times.
os.makedirs(class_images_dir / 'temp/', exist_ok=True)
class_prompt_collection_counter = []
caption_target = []
prev_captions = []
messages = [{"role": "user", "content": f"Generate {4*num_prompts_firstpass} different paraphrase of the caption: {class_prompt}. Preserve the meaning when paraphrasing."}]
while True:
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages
)
# print(completion.choices[0].message.content.lower().split('\n'))
class_prompt_collection_ = [x.strip(
) for x in completion.choices[0].message.content.lower().split('\n') if x.strip() != '']
class_prompt_collection_ = clean_prompt(class_prompt_collection_)
# print(class_prompt_collection_)
for prompt in tqdm(
class_prompt_collection_, desc="Generating anchor and target prompts ", disable=not accelerator.is_local_main_process
):
print(f'Prompt: {prompt}')
images = pipeline([prompt]*10, num_inference_steps=25,).images
score = filter(images, mem_impath, return_score=True)
print(f'Memorization rate: {score}')
if score <= threshold and prompt not in class_prompt_collection and len(class_prompt_collection) < num_prompts_firstpass:
class_prompt_collection += [prompt]
class_prompt_collection_counter += [score]
elif score >= 0.6 and prompt not in caption_target and len(caption_target) < 2:
caption_target += [prompt]
if len(class_prompt_collection) >= num_prompts_firstpass and len(caption_target) >= 2:
break
if len(class_prompt_collection) >= num_prompts_firstpass:
break
# print("prompts till now", class_prompt_collection, caption_target)
# print("prompts till now", len(
# class_prompt_collection), len(caption_target))
prev_captions += class_prompt_collection_
prev_captions_ = ','.join(prev_captions[-40:])
messages = [
{"role": "user", "content": f"Generate {4*(num_prompts_firstpass- len(class_prompt_collection))} different paraphrase of the caption: {class_prompt}. Preserve the meaning the most when paraphrasing. Also make sure that the new captions are different from the following captions: {prev_captions_[:4000]}"}]
# Generate more paraphrases using the captions we retrieved above.
for prompt in class_prompt_collection[:num_prompts_firstpass]:
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": f"Generate {num_prompts_secondpass} different paraphrases of: {prompt}. "}]
)
class_prompt_collection += clean_prompt(
[x.strip() for x in completion.choices[0].message.content.lower().split('\n') if x.strip() != ''])
for prompt in tqdm(class_prompt_collection[num_prompts_firstpass:], desc="Memorization rate for final prompts"):
images = pipeline([prompt]*10, num_inference_steps=25,).images
class_prompt_collection_counter += [
filter(images, mem_impath, return_score=True)]
# select least ten and most memorized text prompts to be selected as anchor and target prompts.
class_prompt_collection = sorted(
zip(class_prompt_collection, class_prompt_collection_counter), key=lambda x: x[1])
caption_target += [x for (x, y) in class_prompt_collection if y >= 0.6]
class_prompt_collection = [
x for (x, y) in class_prompt_collection if y <= threshold][:10]
print("Anchor prompts:", class_prompt_collection)
print("Target prompts:", caption_target)
return class_prompt_collection, ';*+'.join(caption_target)
def clean_prompt(class_prompt_collection):
class_prompt_collection = [re.sub(
r"[0-9]+", lambda num: '' * len(num.group(0)), prompt) for prompt in class_prompt_collection]
class_prompt_collection = [re.sub(
r"^\.+", lambda dots: '' * len(dots.group(0)), prompt) for prompt in class_prompt_collection]
class_prompt_collection = [x.strip() for x in class_prompt_collection]
class_prompt_collection = [x.replace('"', '') for x in class_prompt_collection]
return class_prompt_collection
def safe_dir(dir):
if not dir.exists():
dir.mkdir()
return dir
|